

Ref. Ares(2019)7212592 - 22/11/2019 LIQUEFACT Deliverable 6.6 LIQUEFACT Software – Technical Manual and Application v. 1.0

LIQUEFACT

Assessment and mitigation of liquefaction potential across Europe: a holistic

approach to protect structures/infrastructure for improved resilience to

earthquake-induced liquefaction disasters

H2020-DRA-2015

GA no. 700748

DELIVERABLE D6.6

LIQUEFACT Software – Technical Manual and Application

Author(s):	Abdelghani Meslem, Håvard Iversen, Tina Kaschwich, Kamran Iranpour, Linn Sir Drange
Responsible Partner:	Stiftelsen NORSAR
Version:	1.0
Date:	31/10/2019
Distribution Level (CO, PU)	

DOCUMENT REVISION HISTORY

Date	Version	Editor	Comments	Status
10/03/2018	01	Abdelghani Meslem	Final Draft	Draft

GLOSSARY

Acronym	Description
EILDs	Earthquake-Induced Liquefaction Disaster
LSN	Liquefaction Severity Number
LPI	Liquefaction Potential Index
LP	Liquefaction Probability

CONTENTS

D	ocume	nt Re	evision History1	-2
G	lossary	·		-2
Sı	ummar	y		—7
1	LIQ	UEFA	CT Software1	—9
	1.1	Cre	dit references1	—9
	1.2	Disc	claimer1	—9
	1.3	Soft	tware Processing Concept1–	-10
	1.4	Gra	phical User Interface1–	-11
	1.5	GIS	Interactive Mapping System1–	-12
	1.6	File	Import/Export1–	-13
	1.7	Syst	tem Requirements and Installation1–	-13
2	Sof	tware	e Data Input2–	-15
	2.1	Тур	e and Level of Analysis 2–	-16
	2.1.	.1	Type and Level of Analysis 2–	-16
	2.1.	.2	Geographical Region2-	-17
	2.1.	.3	Location of Interest 2–	-18
	2.2	Haz	zard Data Input 2–	-22
	2.2.	.1	Liquefaction Hazard Model for Quantitative Assessment	-22
	2.2.	.2	Liquefaction Hazard Model for Qualitative Assessment	-33
	2.2.	.3	Seismic Hazard Model2-	-38
	2.3	Risk	< Data Input 2-	-46
	2.3.	.1	Risk Modelling2-	-46
	2.3.	.2	Assets Modelling (STRUCTURE Portfolio Data)2-	-90

	2.4	Miti	gation Input Data	
3	Pr	rocessir	ng Settings	3—100
	3.1	Inte	rpolation Settings	3—100
	3.	1.1	Geostatistical Interpolation – Kriging Method	
	3.	1.2	Deterministic Interpolation – Weighted Average Method	3—103
	3.	1.3	Interpolation Neighborhood	3—103
	3.2	Loss	Factors Settings	3—103
	3.	2.1	Loss Factors for Conventional Vulnerability Analysis	3—103
	3.	2.2	Loss Factors for ESP-based Vulnerability Analysis	
	3.3	Liqu	efaction Risk Levels Definition Settings	3—104
	3.4	Miti	gation Definition Settings	3—105
	3.	4.1	Mitigation Safety Threshold Settings	
	3.	4.2	Mitigation Cost and Benefit Settings	3—106
4	Sc	oftware	Analysis Results/Output	4—107
	4.1	Pre-	Processing and Results	4—107
	4.2	Haza	ard Analysis Output	4—108
	4.	2.1	Seismic Hazard Analysis Output	4—108
	4.	2.2	Quantitative Liquefaction Hazard Analysis Output	4—110
	4.	2.3	Qualitative Liquefaction Hazard Analysis Output	4—118
	4.	2.4	Export Results of Hazard Analysis	4—121
	4.3	Risk	Analysis Output	4—122
	4.	3.1	Ground Liquefaction-related Risk Analysis Output	4—122
	4.	3.2	Ground Shaking-related Risk Analysis Output	4—129
	4.	3.3	Export Results of Risk Analysis	4—137

4	4.4 Mit	igation Analysis Output 4–138
	4.4.1	Mitigation Techniques Applicability Score
	4.4.2	Mitigation Cost 4–139
	4.4.3	Expected Benefit 4—139
	4.4.4	Cost-Benefit Ratio (CBR)
	4.4.5	Export Results of Mitigation Analysis
5	Technica	al Descriptiuon and Background5—142
5	5.1 Liqu	uefaction Hazard Assessment
	5.1.1	Quantitative Analysis of Liquefaction Hazard
	5.1.2	Qualitative Analysis of Liquefaction Hazard
	5.1.3	Seismic Hazard Analysis 5—156
	5.1.4	Interpolation and Mapping5-161
5	5.2 Risk	Assessment
	5.2.1	Process for Vulnerability Analysis
	5.2.2	Computation of Damage Probabilities
	5.2.3	Engineering Demand Parameter5-164
	5.2.4	Computation of Mean Loss Ratio5-164
5	5.3 Liqu	uefaction Mitigation Assessment5—165
	5.3.1	Liquefaction Mitigation Techniques5—165
	5.3.2	Level of Applicability and Score Rating Evaluation5—166
	5.3.3	Cost-Benefit Analaysis5–175
6	Referenc	ces

LIQUEFACT Deliverable 6.6 LIQUEFACT Software – Technical Manual and Application v. 1.0

LIQUEFACT Deliverable 6.6 LIQUEFACT Software – Technical Manual and Application v. 1.0

SUMMARY

This document provides step-by-step guidelines on how to use the LIQUEFACT software, a toolbox for liquefaction mitigation planning and decision support able to estimate and predict the likely consequences of earthquake-induced liquefaction damage (EILD) at local and regional level. The software can provide civil engineers and relevant stakeholders with guidance in making informed assessments on the feasibility and cost-benefit of applying certain liquefaction mitigation techniques for a given earthquake-induced liquefaction threat. The concept of the software process consists of three main independent protocols: Protocol for Hazard Analysis, Protocol for Risk Analysis, and Protocol for Mitigation Analysis. The document is divided into three main parts: Part-1 provides detailed description on the different types of analysis that users can implemented, and type and format of input data required for each case of selected analysis type. Part-2: describes the processing settings that users are required to define depending on the user's objectives and target goal of analysis. Part-3 provides detailed description on the different analysis outcomes and results that users can obtain form each case of selected analysis type, and interpretation of the results. And final part, Part-4, that provides the technical description and theoretical background of all the methodologies, procedures and approaches that have been incorporated in the LIQUEFACT software for the liquefaction hazard, risk and mitigation assessment.

LIQUEFACT Software Technical Manual and Application

1 LIQUEFACT SOFTWARE

LIQUEFACT software, is a toolbox for liquefaction mitigation planning and decision support, able to estimate and predict the likely consequences of earthquake-induced liquefaction damage (EILD) at local and regional level. The software can provide civil engineers and relevant stakeholders with guidance in making informed assessments on the feasibility and cost-benefit of applying certain liquefaction mitigation techniques for a given earthquake-induced liquefaction threat.

1.1 Credit references

LIQUEFACT software has been developed by NORSAR and has received funding from the European Union's HORIZON 2020 research and innovation programme under grant agreement No. 700748. Credit references can be found in "<u>About</u>" under menu Help, and by clicking on "Patent and legal notices".

Datent and legal notices	\times
Convict @ 2010 NORCAD All viets recovered	Â
Copyright © 2019 NORSAK. All rights reserved.	
This software has been developed by NORSAR and has received funding from the Europear Union's HORIZON 2020 research and innovation programme under grant agreement No. 700748.	n
Components used under license:	
Shapelib Copyright © 1999, Frank Warmerdam.	
Kriging algorithm mostly based on MatLab code from Matt Foster, Copyright © 2006-2009	
Qt. This software uses the <u>Qt library</u> licensed under <u>LGPL version 3</u> .	
Qwt. This software is based in part on the work of the Qwt project.	
OpenStreetMap All the data in the OpenStreetMap database, is made available under the <u>Open Database</u> <u>License</u> . Any rights in individual contents of the database are licensed under the <u>Database</u> <u>Contents License</u> .	
Components used under public domain:	
Template Numerical Toolkit (INT), developed by the National Institute of Standards and Technology (NIST), US.	
Numerical Linear Algebra Package (JAMA), developed by the Mathworks and National Institute of Standards and Technology (<u>NIST</u>), US.	· .
OK	

1.2 Disclaimer

By using the software, the user understands, accepts responsibility for, and agrees to the following conditions and limitations:

• LIQUEFACT software is provided for guidance only. Design decisions should not, under any condition, be based on the software alone.

- Results of the LIQUEFACT software should be critically reviewed by an experienced engineer with sufficient expertise and an understanding of the underlying assumptions and limitations of the software.
- The validity of the results cannot be guaranteed as correct and the mitigation framework results provided in the software should be independently cross-checked.
- This software is offered as is, without warranty or promise of support of any kind either expressed or implied.

1.3 Software Processing Concept

Earthquake-induced liquefaction damage assessment is a multi-process analysis that requires different types and forms of input data related to geology and seismology of the site, geotechnical data, and structure-foundation system characteristics of the asset under risk. To this end, the LIQUEFACT software has been designed in a way that EILD assessment is conducted at three independent protocol of analysis to provide more flexibility to the end-user's requirements with respect to the level of analysis to be implemented and type of input data that are available (see Figure 1).

Figure 1. Protocol analysis processes in the LIQUEFACT software

The three-independent protocol of analysis implemented in the LIQUEFACT software are: the protocol for liquefaction hazard analysis, the protocol for risk analysis, and the protocol for mitigation analysis. At the stage of liquefaction hazard, the end-user can conduct qualitative analyses to identify how likely an asset (e.g. individual building/CI asset, portfolio of buildings/distributed infrastructure assets, etc.) is susceptible to liquefaction. If the end-user wants to conduct a risk analysis as well, which is aimed to estimate the level of impact of the potential liquefaction threat on the asset and evaluate the performance, then a quantitative analysis of the liquefaction potential is required (in order to evaluate quantitatively the level of the threat) followed by structural response and damage analysis, and

performance evaluation. For the Mitigation Analysis, the end-user can develop a customized mitigation framework based on the outcome of the risk analysis.

1.4 Graphical User Interface

A robust graphic user interface (GUI) has been designed to provide a user-friendly environment for preparing the input information for the LIQUEFACT software. All processes will be handled through this GUI. The main window of the GUI is divided into three parts:

- *Module Selection*: Pre-Processing Module (for data input and configurations), Processing (run and analysis), Results viewer;
- Analysis Parameters Settings: Type of Analysis and geographical region, Hazard data input, Risk data input and Mitigation data input;
- Input & Output: Portfolio database handling; Liquefaction hazard model, seismic hazard model, risk modelling (vulnerability models and economic and business activity data), portfolio data and mitigation data.

The main Graphic User Interface is used also for work on the database. Filtering and selection options are available for various parameters. Adding, removing and changing information is also done under this GUI.

View Setting: Help	refaction Reference Guide								- 0	:
Import Analysis Type of Analysis and Geographical Regio Type of Analysis Type of Analysis </th <th>iew Settings Help</th> <th>Loc</th> <th>ation View</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	iew Settings Help	Loc	ation View							
Type of Analysis Maxed Data Input Bak Data Input Bologas Emila-Romagai Type of Analysis Maxed, Rikk & Mitgation Bologas Emila-Romagai Bologas <th>Pre-Processing Results</th> <th></th> <th>Risk Identification</th> <th>Latitude</th> <th>Longitude</th> <th>Street</th> <th>District Mun</th> <th>icipal City</th> <th>Region</th> <th>Posta</th>	Pre-Processing Results		Risk Identification	Latitude	Longitude	Street	District Mun	icipal City	Region	Posta
Type of analysis B020 44.804494 11.410094 Bologna Emilia-Romagna Assessment analysis Bazard, Risk & Milligation Bologna Emilia-Romagna Bologna	Type of Analysis and Geographical Region Hazard Data Input Risk Data Input	1	B019	44.803789	11.410564			Bologna	a Emilia-Romagna	40100
Assessment analyse Hazard, Rak & Mitgation ¬ Ruk assessment Physical Impact ¬ Mitgation analysis Existing Structures ¬ Decimal degra econdrates: North must be greater than South. East must be greater than West Decimal degree condrates: North must be greater than South. East must be greater than West Decimal degree condrates: North must be greater than South. East must be greater than South Greater man and the south must be greater than South. East must be greater than South Beneral Bene	Type of analysis	2	B020	44.804494	11.410094			Bologna	a Emilia-Romagna	4010
Risk assessment Physical Impact	Assessment analysis Hazard, Risk & Mitigation 🔻	3	B021	44.804180	11.410419			Bologna	a Emilia-Romagna	4010
Mitgation analysis Existing Structures S B023 44.804677 11.411108 Bologna Emilia-Romagna A Decinal degree coordinates. North must be greater than South. East must be greater than	Risk assessment Physical Impact	4	B022	44.804892	11.411208			Bologna	a Emilia-Romagna	4010
Bozza dividingion Bolza dividingio Bolza dividingion Bol	Mitigation analysis Existing Structures	5	B023	44.804677	11.411108			Bologna	a Emilia-Romagna	4010
Decidinal angle et coordinates. North muss be greater that west Select region North 44.8049 West South 44.8032 South 44.8032 Location of interest SHAPE or CSV fle with building locations within the selected region are imported. Import locations	Geographical region	6	B024	44.804846	11.410874			Bologna	a Emilia-Romagna	4010
North 44.8049 West East 11.4038 11.4119 South 44.8032 Location of interest Shape or CSV file with building locations within the selected region are imported. Import locations Or our dampification Import locations Import locations within the selected region are imported.	Select region Set region to locations Set region from map Save region	7	B025	44.804519	11.411434			Bologna	a Emilia-Romagna	4010
44.8049 West East 11.4088 11.4119 South 44.8032 44.8032 44.8032 Location of interest Shapes ShaPE or CSV file with building locations within the selected region are imported. Import locations Import locations Or ourd amplification Used in of interest Below ShaPE or CSV file with building locations within the selected region are imported. Import locations Import locations Import locations	North	-							E	xport.
West East 11.4088 11.4119 South 44.8032 Location of interest Shapes ShaPE or CSV file with building locations. Only locations within the selected region are imported. Import locations Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. Import locations Prove the with building locations within the selected region are imported. <td< td=""><td>44.8049</td><td>_</td><td></td><td></td><td></td><td>_</td><td>-</td><td></td><td></td><td></td></td<>	44.8049	_				_	-			
ILA Location South Shapes Shapes Shapes Control Control <td< td=""><td>Wast East</td><td>Map</td><td>View</td><td></td><td></td><td></td><td>N</td><td></td><td></td><td></td></td<>	Wast East	Map	View				N			
South 44.8032 Location of interest SHAPE or CSV file with building locations. Only locations within the selected region are imported. Import locations Import locations	11.4088 11.4119				115	10	V		ap overlays	
South 44.8032 Location of Interest SHAPE or CSV file with building locations within the selected region are imported. Import locations Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Import locations Barbor to call the selected region are imported. Barbor to call the selected region are imported. Barbor to call the selected region are import to call the selecte							\swarrow		Tapes Region	
Location of interest SHAPE or CSV file with building locations. Only locations within the selected region are imported. Import locations	South 44 8032					\sim	77			
Location of interest SHAPE or CSV file with building locations. Only locations within the selected region are imported. Import locations Ground amplification Control	110052	ŀ				1			Locations	
SHAFE or CSV file with building locations. Only locations within the selected region are imported. Import locations Import	Location of interest					2		(a 🗆	Ground amplification	on pro
Dimport locations	SHAPE or CSV file with building locations. Only locations within the selected region are imported.						135		Liquefaction profile	es
Via Callo EValta Operation Stress Operatio	Import locations					200	16112		Marker labels	
Via Callo LSN CLSN Risk Uia Callo LSN CLSN Risk						Jan		в	azard maps	
Via Co USN CLEN Risk					2110	·	1		PGA	
				5/13	Ga		~) LSN () LSN RE	sk Lev
				8. C		1				K Lev

Figure 2. LIQUEFACT Software - graphical user interface

Figure 3. LIQUEFACT Software - alternative selection of graphical user interface

The main menu, at the top of the software window, is the command menu of the software consisting of the following drop-down menus: File, View, Settings, and Help

Liquefaction Reference Guide	Liquefaction Reference Guide	Liquefaction Reference Guide	🚯 Liquefaction Reference Guide
File View Settings Help	File View Settings Help	File View Settings Help	File View Settings Help
Dpen project Ctrl+O	✓ Map	Interpolation	Contents F1
New project Ctrl+N	 Location table 	Loss factors	About
Recent projects Ctrl+P		Liquefaction 🕨	
Save project Ctrl+S	Type of Analysis and Geographical Re	Type Mitigation	Type of Analysis and Geographical Region Hazi
🗈 Save project As Ctrl+A	Type of analysis	Type of analysis	Type of analysis
Exit Ctrl+O	Assessment analysis Hazard, Ris	Assessment analysis Hazard, Risk	Assessment analysis Hazard, Risk & Mitigation
Risk assessment Physical Impa	Risk assessment Physical Imp	Risk assessment Physical Imp	Risk assessment Physical Impact
Mitigation analysis Existing Struc	Mitigation analysis Existing Stru	Mitigation analysis Existing Stru	Mitigation analysis Existing Structures

Figure 4. Overview of the command menu of the LIQUEFACT Software

1.5 GIS Interactive Mapping System

The LIQUEFACT software uses Geographic Information Systems (GIS) technology, allowing users to visualize the spatial relationships between various geographic assets or resources for the specific hazard being modelled, a crucial function in the planning process. Open Street Map (Bennet 2010) has been embedded in the Qt for the LIQUEFACT map module, providing the following features:

- 1. view individual buildings;
- 2. view street names and other labels;

- 3. allowing the overlay of input data (e.g. data on buildings, liquefaction profiles and ground shaking maps) on the LIQUEFACT map;
- 4. Hide/show overlays of various types;
- 5. obtain a street address from a location (latitude, longitude);
- 6. obtain a location (latitude, longitude) from a street address;
- 7. Click on markers (building, liquefaction profile, ...);
- 8. Zoom in and out, and translate the map;
- 9. Specify geographical region; and many more features....

1.6 File Import/Export

Import of data into the LIQUEFACT software will be based on as tab-separated CSV files, unformatted TXT files or SHAPE files (ESRI defined formats) that will be converted to SQLite database files in the project (through a database management system). Results can be exported as SHAPE or CSV by selecting SHAPE or CSV in the file type pulldown menu in the Export dialog. SHAPE files can be exported as points or polygons. The database and result files in various formats will be stored in a project directory.

1.7 System Requirements and Installation

LIQUEFACT software works on the following operating systems: Windows 10, Windows 8, Windows 7 or Windows Vista (32-bit and 64-bit);

The installation of the LIQUEFACT software can be done through the following steps:

1. LIQUEFACT software can be downloaded from:

http://www.norsar.no/seismology/engineering/LIQUEFACT

- 2. Save the application on your computer and run the installation.
- 3. From the drop-down menu, click the OK button, and then click the Next button to proceed with the installation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748	LIQUEF Deliverable LIQUEFACT Software – Technical Manual and Applica v	FACT e 6.6 ation /. 1.0
LIQUEFACT 0.9.32 Setup	- · · ×	
	Setup Setup vill guide you through the installation of LIQUEFACT 0.9.32. It is recommended that you close all other applications before starting Setup. This will make it possible to update relevant system files without having to reboot your computer.	

4. The License Agreement appears on the screen. Please, read it carefully and accept the terms by checking the box

Next > Cancel

()	License Agreem	ent				
queract	Please review the 0.9.32.	license terms b	efore insta	lling LIC	UEFACT	
Press Page Down to see t	ne rest of the agreem	ient.				
LICENSE						_
		(cmake ere) N		فالمعادر		
This is an installer created	l using CPack (<u>https:/</u>	/chake.org). N	o license pr	ovidea.		
This is an installer created	I using CPack (<u>https:/</u>	/cmake.org). N	o license pr	ovided.		
This is an installer created	l using CPack (<u>https:/</u>	<u>/cliake.org</u>). N	o license pr	ovided.		
This is an installer created	I using CPack (<u>https:/</u>	<u>/enake.org</u>). N	o license pr	oviaea.		
This is an installer created	l using CPack (<u>https:/</u>	<u>/dnake.org</u>). N	o license pr	ovided.		
This is an installer created	l using CPack (<u>https:/</u>	<u>/dnake.org</u>). N	o license pr	ovided.		
This is an installer created	using CPack (<u>https:/</u>	I Agree to con	tinue. You r	nust ac	cept the	
If you accept the terms of agreement to install IQU	tusing CPack (<u>https:/</u> the agreement, dick FACT 0.9.32.	I Agree to con	tinue. You r	nust ac	cept the	
This is an installer created	i using CPack (<u>https:/</u> ; ; the agreement, click ;FACT 0.9.32.	I Agree to con	tinue. You r	nust ac	cept the	
If you accept the terms of agreement to install LIQU	tusing CPack (<u>https:/</u> the agreement, dick #FACT 0.9.32.	I Agree to con	tinue. You r	nust ac	cept the	

Click Next to continue.

5. On the next request to select the destination folder, click the Next button again to install to the 'default' folder or click the Browse button to install to a different one.

LIQUEFACT 0.9.32 Setup			_		>
Choose Install Locat	ion				
Choose the folder in w	nich to ins	tall LIQU	EFACT 0).9.32.	
Setup will install LIQUEFACT 0.9.32 in the following f Browse and select another folder. Click Next to cont	older. To i nue.	install in a	a differe	nt folder,	dick
Destination Folder			Pro	1459	
Destination Folder C:\Program Files\LIQUEFACT 0.9.32			Bro	wse	
Destination Folder C:\Program Files\LQUEFACT 0.9.32 Space required: 708.7 MB			Bro	wse	
Destination Folder C:\Program Files\LIQUEFACT 0.9.32 Space required: 708.7 MB Space available: 43.8 GB			Bro	wse	
Destination Folder C:\Program Files\LIQUEFACT 0.9.32 Space required: 708.7 MB Space available: 43.8 GB Jullsoft Install System v3.03			Bro	wse	
Destination Folder C:\Program Files\LIQUEFACT 0.9.32 Space required: 708.7 MB Space available: 43.8 GB Julisoft Install System v3.03			Bro	wse	

6. Click the Install button and wait until the software is installed.

LIQUEFACT 0.9.32 Setup	Installing Please wait while LIQUEFACT 0.9.3	 2 is being insta	alled.	
Extract: LiquefactionHazard	i_2475YRP.db 31%			
Nullsoft Install System v3.03 –	< Back	Next >	Cano	el

7. At the end of the procedure, click Finish to exit the wizard.

2 SOFTWARE DATA INPUT

LIQUEFACT Software consists of three protocols: Liquefaction Hazard Analysis Protocol, Risk Analysis Protocol, and Mitigation Analysis Protocol. Each protocol consists of an Input and a Results Module.

e of Analysis and Geo	graphical Region	Hazard Data Input	Risk Data Input							
Type of analysis —										
Assessment analysis	Hazard, Risk & M	azard, Risk & Mitigation 🔻								
Risk assessment	Physical Impact 8	& Economic 🔹 🔻								
Mitigation analysis	Existing Structure	isting Structures 🔻								
Geographical region		. L	F							
Select region	Set region	set region to locations	Set region from map	Save region						
		North								
]							
West			East							
		South								
]							
			1							
Location of interest										
SHAPE or CSV file with	n building locations	s. Only locations within t	he selected region are imp	ported.						
Import locations										

2.1 Type and Level of Analysis

As first step to be implemented in the LIQUEFACT software, is the definition of the objective and level of analysis to be carried out. This can be done by defining the followings:

- Type and level of analysis;
- Geographical region; and
- Location of interest.

2.1.1 Type and Level of Analysis

Considering the software processing concept aspect described above, the LIQUEFACT software is designed and developed to provide options and alternatives of analysis processing, offering more flexibility to end-users with respect to how detailed the input data are, the availability of the data, and what type of assessment and result the end-users want to obtain. Assessment analysis can be defined using one of the three options:

- Hazard
- Hazard and Risk
- Hazard, Risk and Mitigation

pe of Analysis and Geo	graphical Region	Hazard Data Input	Risk Data Input
Type of analysis			
Assessment analysis	Hazard	-	
Risk assessment	Hazard Hazard & Risk Hazard Risk & Mit	igation	
Mitigation analysis	None	igauon	

Assessment analysis: Hazard: For Hazard assessment analysis, users will be required to import data related to hazard condition only. This level of assessment allows the evaluation of liquefaction susceptibility for a given susceptible category at specified level of ground shaking intensity. In addition, end-users can estimate the liquefaction threat on a given built/infrastructure asset, where different approaches can be used in order to correlate the liquefaction-induced ground deformation with the asset response/damage.

Type of Analysis and Geographical Region	Hazard Data Input	Risk Data Input
Type of analysis Assessment analysis Hazard	•	
Risk assessment None	~	
Mitigation analysis None	~	

Assessment analysis: Hazard and Risk. Risk Assessment and Risk Data Input are activated, and endusers will be required to provide input data related to hazard and risk. In addition to the evaluation of

from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748

liquefaction susceptibility and then level of liquefaction threat, this level of analysis allows the assessment of level of impact of the EILD event on the built asset (building/infrastructure).

In the section *Risk Assessment* end-users will be required to defined level of impact to be assessed:

- *Physical impact*: for the computation of damage. End-users will be required to provide vulnerability models and portfolio data with structural characteristics-related information
- *Physical impact & Economic*: for damage and economic loss computation. In addition to vulnerability models and portfolio data with structural characteristics-related information, end-users will also be required to provide economic and business activity data.

Type of Analysis and Geographical Region		Risk Data Input	
Hazard & Risk	•		
Physical Impact & I	Economic 🔻		
Physical Impact Physical Impact & I	Economic		
	graphical Region Hazard & Risk Physical Impact & i Physical Impact Physical Impact & i	graphical Region Hazard Data Input Hazard & Risk Physical Impact & Economic Physical Impact Physical Impact & Economic	graphical Region Hazard Data Input Risk Data Input Hazard & Risk Physical Impact & Economic Physical Impact Physical Impact & Economic

Assessment analysis: Hazard, Risk and Mitigation. Mitigation analysis and Mitigation Data Input are activated, and end-users will be required to provide input data related to hazard, risk and mitigation. In addition to the evaluation of level of impact of the EILD event on the built asset (building/infrastructure), this level of analysis allows the development of mitigation framework in terms of soil improvements, cost and prioritize the mitigation measures.

In the section *Mitigation analysis* end-users will be required to defined if at the selected locations of interest there are assets, i.e. *Existing Structures* or *New Construction* (free field), an important factor for the development of mitigation framework.

Т	ype of Analysis and Geo	graphical Region Hazard Data Input Risk Data Input	
	Type of analysis	Hazard, Risk & Mitigation	
	Risk assessment	Physical Impact & Economic	
	Mitigation analysis	Existing Structures	
	 Geographical region 	New Construction	

2.1.2 Geographical Region

In this section end-users will be required to select and set the region of study. After selection, the region can be set using the following options:

Set region	after providing manually the decimal degree coordinates
Set region to	this option is used after the import of locations (section location of interest), and then the
locations	decimal degree coordinates will automatically be computed by the software.
Set region	this is the easiest option and is used after the import of locations (section location of interest).
from map	The users can zoom their preference area to be studied and then click on "Set region from
	map". The decimal degree coordinates will automatically be computed by the software.

Decimal degree coordi	nates. North m	nust be greater than South	. East must be greater th	an West
Select region	Set region	Set region to locations	Set region from map	Save region
		North	_	
West			East	
		South	_	

The rectangle displayed in green color represents the selected region of study

2.1.3 Location of Interest

Providing locations of interest is mandatory for all type and level analyses. These locations can represent existing assets (buildings, infrastructures) or free filed sites where future asset will be built on. Table below illustrates the list of input parameters that define *LOCATION* of interest.

Data Input	Description	NOTE
Risk Identification	Code identification to be assigned to each individual asset or a given site	Mandatory
LOCATION		
Latitude	Latitude in decimal degree	Mandatory
Longitude	Longitude in decimal degree	Mandatory
Street	Street	Nonmandatory
District	District	Nonmandatory
Municipal	Municipal	Nonmandatory
Region	Region	Nonmandatory
Postal Code	Postal code	Nonmandatory
Geo-code	represent the geounit to be used in computation of Mean Loss Ratio	Mandatory

Users can import asset (building/infrastructure) locations as tab-separated CSV, unformatted TXT or SHAPE files (ESRI defined formats). CSV and TXT files are always imported as points, and SHAPE files can be important as points or polygons.

Location of interest SHAPE or CSV file with building locations. Only location Import locations	is within the selected region are imported.	
	Import locations	×
	Look in: D:\LIQUEFACT\PortfolioData) 🖓 🛤 🗉
	My Computer Name	^
	<	>
	File name:	Open
	Files of type: SHAPE (*.shp *shape)	Cancel
	SHAPE (*.shp *shape)	

Example of CSV/TXT file for building locations that can be imported in the LIQUEFACT software

Portfolio-Data.txt - Notepad									- 0	×
File Edit Format View Help	р									
<pre># Risk-Identification</pre>	Latitude	Longitude	Street	District	Municipal	City Regio	on	Postal-Code	Geo-coo	de ^
B019	44.803789	11.410564	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	1	
B020	44.804494	11.410094	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	1	
B021	44.804180	11.410419	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	1	
B022	44.804892	11.411208	St.25	10	Bologna	Bologna Emil	ia-Romagna	40100	1	
B023	44.804677	11.411108	St.25	10	Bologna	Bologna Emil	ia-Romagna	40100	1	
B024	44.804846	11.410874	St.25	10	Bologna	Bologna Emil	ia-Romagna	40100	1	
B025	44.804519	11.411434	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	1	
B026	44.804201	11.411934	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	1	
B027	44.804042	11.411598	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	2	
B028	44.803901	11.408807	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	2	
B029	44.803652	11.409595	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	2	
B030	44.803551	11.409127	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	2	
B031	44.803232	11.409781	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	2	
B032	44.804192	11.409666	St.25	10	Bologna	Bologna Emil:	ia-Romagna	40100	2	
RA33	44 804128	11 409337	St 25	10	Rologna	Rologna Emil	ia-Romagna	40100	2	×
<										>
					Unix (LF)	Ln 16, Col 7	8	100%		

Building locations and map view, imported from CSV/TXT file

Loca	ation View											ð×
	Risk Identification	Latitude	Longitude	Street	District	Municipal	City	Region	Postal Code	Geo-code	Shape	^
1	B019	44.803789	11.410564				Bologna	Emilia-Romagna	40100	1		
2	B020	44.804494	11.410094				Bologna	Emilia-Romagna	40100	1		
3	B021	44.804180	11.410419				Bologna	Emilia-Romagna	40100	1		
4	B022	44.804892	11.411208				Bologna	Emilia-Romagna	40100	1		
5	B023	44.804677	11.411108				Bologna	Emilia-Romagna	40100	1		
6	B024	44.804846	11.410874				Bologna	Emilia-Romagna	40100	1		
7	B025	44.804519	11.411434				Bologna	Emilia-Romagna	40100	1		~
											Export	
						_						.
teti ja	ero nsci	C		Po Jia Car	S. Io Evan	Wia Gior generi	Jan -	Rossim	Map Shape V Re Lo Lo Gr Liq Ma Hazar V Do Lo Lo Lo Lo PG Lo Lo PG S Lo PG S S Lo PG	overlays s gion rs cations ound amplifice uefaction pro rker labels d maps iA N LSN I LSN I LPI I P GD	ition prof files Risk Leve Visk Leve	iles el

Example of SHAPE file for building locations that can be imported in the LIQUEFACT software

Π	FID	Shape	ID	Latitude	Longitude	Street	District	Municipal	City	Region	PostalCode	Geo-Code
	0	Polygon	B019	44.803789	11.410564	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	1
	1	Polygon	B020	44.804494	11.410094	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	1
	2	Polygon	B021	44.80418	11.410419	Via Paolo EvangelisaVia Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	1
	3	Polygon	B022	44.804892	11.411208	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	2
	4	Polygon	B023	44.804677	11.411108	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	2
	5	Polygon	B024	44.804846	11.410874	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	2
	6	Polygon	B025	44.804519	11.411434	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	2
	7	Polygon	B026	44.804201	11.411934	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	2
	8	Polygon	B027	44.804042	11.411598	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	2
	9	Polygon	B028	44.803901	11.408807	Via Risorgimento	D01	Bologna	Bologna	Emilia-Romagna	40100	1
	10	Polygon	B029	44.803652	11.409595	Via Risorgimento	D01	Bologna	Bologna	Emilia-Romagna	40100	1
	11	Polygon	B030	44.803551	11.409127	Via Risorgimento	D01	Bologna	Bologna	Emilia-Romagna	40100	1
	12	Polygon	B031	44.803232	11.409781	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	1
	13	Polygon	B032	44.804192	11.409666	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	1
	14	Polygon	B033	44.804128	11.409337	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	1

Building locations and map view, imported from SHAPE file

Loca	ation View											₽×
	Risk Identification	Latitude	Longitude	Street	District	Municipal	City	Region	Postal Code	Geo-code	Shape	^
1	B019	44.803789	11.410564	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	1	\checkmark	
2	B020	44.804494	11.410094	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	1	~	
3	B021	44.804180	11.410419	Via Paolo EvangelisaVia Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	1	\checkmark	
4	B022	44.804892	11.411208	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	2	\checkmark	
5	B023	44.804677	11.411108	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	2	~	
6	B024	44.804846	11.410874	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	2	\checkmark	
7	B025	44.804519	11.411434	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	2	\checkmark	~
											Export	
				=								
Мар	View		/									в ×
Via	de	T/A				possin	-		Мар о	overlays		
	Sel Erutter			0	chir	ORC			Shapes			
				11a-Gi	oace	M.			🗹 Reg	ion		
		X							Marker	5		
									🗹 Loc	ations		
	E.	21.0							Gro	und amplifica	tion profi	iles
	Lips	0							Liqu	efaction pro	iles	
	Selle	2º	Y Y							ker labels		
	All I	2		-uangen	4				Hazard	maps		
	No. cramsc			ano Ev		Otto	X) O PG	A		
Å	o tonio G.	$\langle N \rangle$		Viaco		1/mg					Risk Leve	el .
le	tur			avoro							isk Level	
			dell			A			O ESF	GD GD		
ap @	WikiMedia Foundation	Data © O	penStreetMa	contributors San Carlo								

All imported data (CSV, TXT or SHAPE) can be edited and modified in the LIQUEFACT software. Below is an example of creating a polygon editing the original version of the SHAPE file that was imported in the software. Double Click on "SHAPE" selected in Red to modify or edit a polygon.

_												
	Risk Identification	Latitude	Longitude	Street	District	Municipal	City	Region	Postal Code	Geo-code	Shape	^
1	B019	44.803789	11.410564	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	1	~	
2	B020	44.804494	11.410094	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	1	~)
3	B021	44.804180	11.410419	Via Paolo EvangelisaVia Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	1	~	·
4	B022	44.804892	11.411208	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	2	\checkmark	

By Clicking on "<u>New polygon</u>" button to add or modify an existing polygon.

2.2 Hazard Data Input

LIQUEFACT software incorporates alternatives of methodologies providing users with flexibility in conducting analysis depending on how detailed the available input data are and type of result the users want to obtain. In general, the incorporated methodologies of liquefaction hazard assessment are based on two approaches: **Quantitative** approach (based on detailed geotechnical soil profiles data such as <u>CPT</u>, <u>SPT</u> and <u>Vs Profile</u>) and **Qualitative** approach (based on pre-defined liquefaction hazard classification maps that can be used through <u>User-Defined</u> and <u>Pre-Defined</u>).

Type of Analysis and Geographica	Hazard Data Input	Risk Data Input
Liquefaction Hazard Model	Seismic Hazard Model	
Liquefaction profile type Sele CPT SPT Vs F Pre Use	ect ▼ ect - Profile -Defined er-Defined	

2.2.1 Liquefaction Hazard Model for Quantitative Assessment

The concept of the quantitative approach incorporated in the LIQUEFACT software consists of number of analyses to be carried out in two main sequences:

- Step-1: Liquefaction Triggering Analysis: to estimate the tendency of developing liquefaction under a given seismic input. The analysis implies the calculation of a liquefaction safety factor (FSL) obtained by dividing the Cyclic Resistance Ratio (CRR) producing liquefaction with the Cyclic Stress Ratio (CSR) induced by the earthquake. Then, seismic liquefaction is triggered in a susceptible soil when the seismic demand (expressed as CSR) exceeds the resistance of such soils (expressed as CRR).
- Step-2: Liquefaction-induced Surficial Manifestations: implies to evaluate the effects at the ground level. At this stage analyses are conducted in free field conditions, neglecting the presence of buildings or infrastructures and their possible interaction with the subsoil, and thus liquefaction severity indicators such as Liquefaction Severity Number (LSN), Liquefaction Probability Index (LPI) and Liquefaction Probability (LP), and free-field settlement are adopted to broadly quantify the severity of liquefaction.

For the computation of liquefaction triggering and liquefaction-induced surficial manifestations, different methods can be used depending on what type of soil profiles data are available: <u>CPT</u>-based soil profiles, <u>SPT</u> or <u>Vs</u>-based soil profiles. Note that results of liquefaction hazard from this level of analysis (i.e. quantitative assessment) can be used to correlate the measured intensities with the asset response in Risk Analysis.

2.2.1.1 Import Data Type: Cone Penetration Tests (CPT)

LIQUEFACT software incorporates the Boulanger and Idriss (2014) procedure to evaluate the Factor of Safety against liquefaction at each depth of a soil profile using CPT data. For the implementation, CPT data should be imported as following:

1. Click the *Import* button to import the file with list of the CPT profiles: *ID of CPT Profile, Latitude, Longitude,* and *Depth to Ground Water Table GWT* (in meter unit). The file can be imported as tab-separated CSV or unformatted TXT.

ImportData_List-CPT-Profiles.txt - Notepad − × File Edit Format View Help #ID-CPT-Profile Latitude Longitude Depth_Ground Water Table GWT (m) / 1851308501 44.80208896 11.40932225 1.5 1.5 1851308502 44.80462801 11.40768696 1.5
File Edit Format View Help #ID-CPT-Profile Latitude Longitude Depth_Ground Water Table GWT (m) ////////////////////////////////////
#ID-CPT-Profile Latitude Longitude Depth_Ground Water Table GWT (m) / 1851308501 44.80208896 11.40932225 1.5 1851308502 44.80462801 11.40768696 1.5
1851308501 44.80208896 11.40932225 1.5 1851308502 44.80462801 11.40768696 1.5
1851308502 44.80462801 11.40768696 1.5
1851308503 44.80445374 11.40949104 1.5
1851308504 44.80649764 11.41087042 1.5
185130E427 44.8010658 11.40423144 1.5
185130E432 44.79940303 11.40365838 1.5
185130E433 44.79976871 11.40626687 1.5
1851300505 44.80275146 11.40586276 1.5
185130U506 44.80353664 11.40718553 1.5
4754300507 AA 0030000 AA 40304040 A 5
We have (CDLD) 1-1 C-151 1009/
Windows (CRLF) En I, Col ol 100%

The imported list of CPT profile file can be modified or updated by double click on any selected row representing a given CPT profile. It is also possible to Add or Delete any row/profile.

uefa	action Hazard Mod	lel Seism	iic Hazard Mo	del			
uefa	action profile type	CPT	•				
Path	to liquefaction pro	ofiles RE/120	0_LRG_Lique	faction Haza	rd Analysis/1210_CF	PT Profile Data	Browse
	CPT-ID Profile	Latitude	Longitude	GWT (m)			^
1	185130B501	44.802089	11.409322	1.5000			
2	185130B502	44.804847	11.406761	1.5000			
3	185130C002	44.801036	11.405327	1.5000			
4	185130C004	44.803548	11.412935	1.5000			
5	185130C006	44.799635	11.414988	1.5000			
6	185130C007	44.805379	11.414959	1.5000			
7	185130C010	44.803479	11.409974	1.5000			
8	185130C011	44.801536	11.416027	1.5000			
9	185130C012	44.806339	11.400688	1.5000			
10	185130C013	44.809084	11.405693	1.5000			
A	dd row Dele	ete rows	View	Import			Export
	nd amp profile acc	icoment C	agent Distance	o to Doint W	the ut Tetercelation	-	

The locations of CPT profiles can be viewed in the GIS platform of the LIQUEFACT software *Map View* by ticking the box "*Liquefact profiles*".

2. Then Click the Browse button to define the path to the folder where CPT profiles are located. The CPT profiles must be created as separate files in format of tab-separated CSV or unformatted TXT files. Each CPT profile file contains: *Depth [in m]*, *Tip Resistance qc [in MPa]*, *Sleeve Friction fs [in MPa]*, and *Pore Pressure U [in MPa]*.

The <u>View</u> button allows to view the three plots of a selected CPT profile: *CPT Tip Resistance,* Sleeve Friction, and Pore Pressure.

CPT-185130B502.	txt - Notepad		- 0	×									
File Edit Format	File Edit Format View Help												
#Depth [m]	Tip Resistance,qc [MPa]	Sleeve Friction,fs [MPa]	Pore Pressure,U [MPa]	~									
0.1	5.693	0.053	0.015										
0.2	6.569	0.062	0.006										
0.3	4.38	0.031	0.006										
0.4	3.942	0.009	0.006										
0.5	3.285	0.009	0.005										
0.6	2.628	0.009	0.005										
0.7	2.847	0.009	0.005										
0.8	3.066	0.009	0.014	\sim									
<				>									
		Windows (CRLF) Ln 1	2, Col 24 100%										

 At the section <u>Ground amp profile assignment</u>, users can define how seismic actions (peak ground accelerations PGAs) resulted from ground amplification profiles will be assigned to the CPT profiles for the computation of liquefaction severity indicators. Users will have to choose one of the following options:

<u>Closest Distance to Point Without Interpolation</u>: the assigned value of PGA is directly resulted from the closest ground amplification profile at the location of a given CPT profile or the closed to it.

<u>Closest Distance to Point After Interpolation</u>. the assigned value of PGA is directly resulted from interpolation, at the location of a given CPT profile.

of An	alysis and Geogra	phical Regio	n Hazard	Data Input	Risk Data Input		
quefa	action Hazard Mod	el Seism	nic Hazard Mo	del			
quefa	action profile type	CPT	•				
Path	to liquefaction pro	ofiles RE/120	00_LRG_Lique	faction Hazar	d Analysis/1210_CPT	۲ Profile Data	Browse
	CPT-ID Profile	Latitude	Longitude	GWT (m)			^
1	185130B501	44.802089	11.409322	1.5000			
2	185130B502	44.804847	11.406761	1.5000			
3	185130C002	44.801036	11.405327	1.5000			
4	185130C004	44.803548	11.412935	1.5000			
5	185130C006	44.799635	11.414988	1.5000			
6	185130C007	44.805379	11.414959	1.5000			
7	185130C010	44.803479	11.409974	1.5000			
8	185130C011	44.801536	11.416027	1.5000			
9	185130C012	44.806339	11.400688	1.5000			
10	185130C013	44.809084	11.405693	1.5000			~
A	dd row Dele	te rows	View	Import			Export
Grou	nd amp profile ass	ignment Cl Cl	osest Distanc osest Distanc osest Distanc	e to Point Wit e to Point Wit e to Point Afte	nout Interpolation nout Interpolation er Interpolation	•	

2.2.1.2 Import Data Type: Standard Penetration Tests (SPT)

LIQUEFACT software incorporates the Boulanger and Idriss (2014) procedure to evaluate the Factor of Safety against liquefaction at each depth of a soil profile using CPT data. For the implementation, CPT data should be imported as following:

1. Click the <u>Import</u> button to import the file with list of the SPT profiles: ID of SPT Profile, Latitude, Longitude, and Depth to Ground Water Table GWT (in meter unit). The file can be imported as tab-separated CSV or unformatted TXT.

ImportData_SPT.txt - Notepad							_]	\times
File Edit Format View Help										
#ID-SPT-Profile	Latitude	Longitu	ıde	Depth_	Ground	Water	Table	GWT	[m]	^
SPT-001	59,958507	11,0395	607	0,5						
SPT-002	59,958675	11,0523	91	0,8						
SPT-003	59,956712	11,0533	313	1						
SPT-004	59,956477	11,0439	31	0,8						
SPT-005	59,955118	11,0395	75	4						
SPT-006	59,955999	11,0491	.08	1,5						
SPT-007	59,955672	11,0498	345	3,5						
SPT-008	59,952946	11,0491	.58	0,8						
		11 0/13	C1	2 6						۰,
										-
			Windows (0	CRLF)	Ln 1, Co	1 62	1009	6		

The imported list of SPT profile file can be modified or updated by double click on any selected row representing a given SPT profile. It is also possible to Add or Delete any row/profile.

of An	alysis and Geogra	phical Regio	n Hazard	Data Input	Risk Data Input		
quefa	action Hazard Mod	el Seism	iic Hazard Mo	del			
juefa	action profile type	SPT	•				
Path	to liquefaction pro	ofiles RE/120	00_LRG_Lique	faction Haza	d Analysis/1220_S	PT Profile Data	Browse
	SPT-ID Profile	Latitude	Longitude	GWT (m)			
1	SPT-001	59.958507	11.039507	0.5000			
2	SPT-002	59.958675	11.052391	0.8000			
3	SPT-003	59.956712	11.053313	1.0000			
4	SPT-004	59.956477	11.043931	0.8000			
5	SPT-005	59.955118	11.039575	4.0000			
6	SPT-006	59.955999	11.049108	1.5000			
7	SPT-007	59.955672	11.049845	3.5000			
8	SPT-008	59.952946	11.049158	0.8000			
9	SPT-009	59.953650	11.041351	2.6000			
10	SPT-010	59.955622	11.044333	1.5000			
A	dd row Dele	ete rows	View	Import.			Export
Grou	nd amp profile ass	ignment Cl	osest Distanc	e to Point Wit	hout Interpolation	•	

The locations of SPT profiles can be viewed in the GIS platform of the LIQUEFACT software *Map View* by ticking the box "*Liquefact profiles*".

 Then Click the <u>Browse</u> button to define the path to the folder where SPT profiles are located. The SPT profiles must be created as separate files in format of tab-separated CSV or

unformatted TXT files. Each SPT profile file contains: *Depth [in m]*, *N*_{SPT}, *Upper Boundary [in m]*, and *Lower Boundary [in m]*.

The View button allows to view the plot of a selected SPT profile.

3. At the section <u>Ground amp profile assignment</u>, users can define how seismic actions (peak ground accelerations PGAs) resulted from ground amplification profiles will be assigned to the SPT profiles for computation of liquefaction severity indicators. Users will have to choose one of the following options:

<u>Closest Distance to Point Without Interpolation</u>: the assigned value of PGA is directly resulted from the closest ground amplification profile at the location of a given SPT profile or the closed to it.

<u>Closest Distance to Point After Interpolation</u>. the assigned value of PGA is directly resulted from interpolation, at the location of a given SPT profile.

ype of An	alysis and Geogra	phical Regio	n Hazard	Data Input	Risk [Data Input					
Liquefa	action Hazard Mod	el Seism	nic Hazard Mo	del							
Liquefa	iquefaction profile type SPT										
Path	Path to liquefaction profiles RE/1200_LRG_Liquefaction Hazard Analysis/1220_SPT Profile Data										
	SPT-ID Profile	Latitude	Longitude	GWT (m)							
1	SPT-001	59.958507	11.039507	0.5000							
2	SPT-002	59.958675	11.052391	0.8000							
3	SPT-003	59.956712	11.053313	1.0000							
4	SPT-004	59.956477	11.043931	0.8000							
5	SPT-005	59.955118	11.039575	4.0000							
6	SPT-006	59.955999	11.049108	1.5000							
7	SPT-007	59.955672	11.049845	3.5000							
8	SPT-008	59.952946	11.049158	0.8000							
9	SPT-009	59.953650	11.041351	2.6000							
10	SPT-010	59.955622	11.044333	1.5000							
A	dd row Dele	te rows	View	Import				Export			
Grou	nd amp profile ass	ignment Cl	osest Distanc osest Distanc	e to Point W e to Point W	ithout Int ithout Int	erpolation erpolation	-				
		Cl	osest Distanc	e to Point Af	ter Inter	polation					

2.2.1.3 Import Data Type: Vs-Profile

LIQUEFACT software incorporates the Boulanger and Idriss (2014) procedure to evaluate the Factor of Safety against liquefaction at each depth of a soil profile using Vs data. For the implementation, Vs data should be imported as following:

1. Click the <u>Import</u> button to import the file with list of the Vs profiles: ID of Vs Profile, Latitude, Longitude, Depth to Ground Water Table GWT (in meter unit) and Soil-Ageing (in year). The file can be imported as tab-separated CSV or unformatted TXT.

ImportData_VsPro	file.txt - Notepad			– 🗆 X
File Edit Format	View Help			
<pre>#Vs-ID Profile Vsprofile-001 Vsprofile-002 Vsprofile-003 Vsprofile-004 Vsprofile-005 Vsprofile-007 Vsprofile-007 Vsprofile-009</pre>	Latitude 59,958507 59,958675 59,956712 59,956477 59,955118 59,955999 59,955672 59,952946 59,952946	Longitude 11,039507 11,052391 11,053313 11,043931 11,039575 11,049108 11,049158 11,049158 11,049158	Depth of Ground Water Table GWT[m] 0,5 0,8 1 0,8 4 1,5 3,5 0,8 2,6	Soil-Ageing[years] ^ 1000 1000 200 100 100 200 200 200 1000 1000 1000
<			Windows (CRLF) Ln 11, Col 43	> 100%:

The imported list of Vs profile file can be modified or updated by double click on any selected row representing a given Vs profile. It is also possible to Add or Delete any row/profile.

uefa	action profile type	e Vs Profile	•				
ath	to liquefaction p	rofiles ARE/	1200 LRG Lig	uefaction H	azard Analysis/1230 Vs	Profile Data	Browse
	VS-ID Profile	Latitude		GWT (m)	Soil Ageing (years)		
1	Vsprofile-001	59.958507	11.039507	0.5000	1000		
2	Vsprofile-002	59.958675	11.052391	0.8000	1000		
3	Vsprofile-003	59.956712	11.053313	1.0000	200		
4	Vsprofile-004	59.956477	11.043931	0.8000	100		
5	Vsprofile-005	59.955118	11.039575	4.0000	100		
6	Vsprofile-006	59.955999	11.049108	1.5000	200		
7	Vsprofile-007	59.955672	11.049845	3.5000	200		
8	Vsprofile-008	59.952946	11.049158	0.8000	1000		
9	Vsprofile-009	59.953650	11.041351	2.6000	1000		
10	Vsprofile-010	59.955622	11.044333	1.5000	1000		
A	dd row De	lete rows	View	Impo	rt		Export

The locations of Vs profiles can be viewed in the GIS platform of the LIQUEFACT software **Map View** by ticking the box "<u>Liquefact profiles</u>".

 Then Click the <u>Browse</u> button to define the path to the folder where Vs profiles are located. The VS profiles must be created as separate files in format of tab-separated CSV or unformatted TXT files. Each Vs profile file contains: Depth [in m] and shear velocity Vs [in m/s].

🧊 vsprofile-005.txt - Notepad 🛛 — 🗆 🗙				Liquefaction profile Vsprofile-005 (Shear wave ×
File Edit Format	View Help			
File Edit Format #Depth[m] 3,20 4,20 5,20 6,20 7,20 8,20 9,20 10,20 11,21 12,21 13,21 14,21 15,21 16,23 17,23 18,23 19,23 20,22 21,22 22,22 23,22 24,22 25,2 26,2 27,3 8	View Help Vs[m/s] 138,44 129,23 127,22 120,63 106,56 106,55 115,23 153,36 142,33 170,09 210,00 208,15 218,58 295,92 291,00 267,69 233,29 223,96 233,29 223,96 233,29 223,96 239,74 241,59 247,70 254,75 240,1 257,5 246,1 255,7			5 10 10 10 10 10 10 10 10 10 10
29,4	247,5			Shear wave velocity (m/s)
			~	
<	Wi	ndow Ln 28, C	> 100%:	Close

The <u>View</u> button allows to view the plot of a selected Vs profile.

3. At the section <u>Ground amp profile assignment</u>, users can define how seismic actions (peak ground accelerations PGAs) resulted from ground amplification profiles will be assigned to the Vs profiles for computation of liquefaction severity indicators. Users will have to choose one of the following options:

<u>Closest Distance to Point Without Interpolation</u>: the assigned value of PGA is directly resulted from the closest ground amplification profile at the location of a given VS profile or the closed to it.

<u>Closest Distance to Point After Interpolation</u>. the assigned value of PGA is directly resulted from interpolation, at the location of a given Vs profile.

of Ar	nalysis and Geogr	aphical Regi	on Hazar	d Data Inpu	t Risk Data Input		
quefa	action Hazard Mo	del Seis	mic Hazard M	odel			
quefa Path	action profile type to liquefaction pr	Vs Profile	▼ 1200_LRG_Lic	quefaction H	azard Analysis/1230_V:	s Profile Data	Browse
	VS-ID Profile	Latitude	Longitude	GWT (m)	Soil Ageing (years)		
1	Vsprofile-001	59.958507	11.039507	0.5000	1000		
2	Vsprofile-002	59.958675	11.052391	0.8000	1000		
3	Vsprofile-003	59.956712	11.053313	1.0000	200		
4	Vsprofile-004	59.956477	11.043931	0.8000	100		
5	Vsprofile-005	59.955118	11.039575	4.0000	100		
6	Vsprofile-006	59.955999	11.049108	1.5000	200		
7	Vsprofile-007	59.955672	11.049845	3.5000	200		
8	Vsprofile-008	59.952946	11.049158	0.8000	1000		
9	Vsprofile-009	59.953650	11.041351	2.6000	1000		
10	Vsprofile-010	59.955622	11.044333	1.5000	1000		
A	dd row De	lete rows	View	Impo	rt		Export
Ground amp profile assignment Closest Distance to Point Without Interpolation Closest Distance to Point Without Interpolation							

2.2.2 Liquefaction Hazard Model for Qualitative Assessment

The concept of the qualitative approach, incorporated in the LIQUEFACT software, is based on using used-supplied or pre-defined liquefaction hazard map with qualitative classification labels representing levels of hazard. This process can be conducted through two options:

- <u>User-Defined</u>: is based on user-supplied microzonation or macrozonation liquefaction hazard maps generated for local or regional level for a specific study.
- <u>Pre-Defined</u>: is based on using the European liquefaction macrozonation maps, provided for different return periods, and which are embedded in the LIQUEFACT software.

Note that <u>User-Defined</u> and <u>Pre-Defined</u> in the module of <u>Liquefaction Hazard Model</u> are activated only if the selected type of <u>Assessment Analysis</u> (in the protocol Type of Analysis and Geographical Region) is <u>Hazard</u>.

Type of Analysis and Geographical Region	Hazard Data Input	Risk Data Input
Liquefaction Hazard Model Seismic H	Hazard Model	
Liquefaction profile type Select	•	
Select		
SPT Vs Profile		
Pre-Defined User-Defined		

When the selected level of <u>Assessment Analysis</u> is <u>Hazard</u>, then <u>User-Defined</u> and <u>Pre-Defined</u> in the module of <u>Liquefaction Hazard Model</u> are activated When the selected level of <u>Assessment Analysis</u> is <u>Hazard &</u> <u>Risk</u> or <u>Hazard, Risk & Mitigation</u>, then <u>User-Defined</u> and <u>Pre-Defined</u> in the module of <u>Liquefaction Hazard Model</u> are not activated

2.2.2.1 User-Defined Liquefaction Hazard

User-supplied qualitative liquefaction hazard maps can be in terms of the following liquefaction severity indicators: Liquefaction Susceptibility, Liquefaction Potential Index (LPI), Liquefaction Severity Number (LSN), and Probability of Liquefaction (PL).

NOTE: In the LIQUEFACT software, when user-supplied liquefaction hazard maps are used through the selection of <u>User-Defined</u> option, location-specific levels of liquefaction hazard are not interpolated, and closest location-specific to a given asset is assigned for the evaluation of liquefaction risk.

2.2.2.1.1 User-Supplied Liquefaction Hazard Map

To import map in terms of Liquefaction Hazard indicator: user is first required to select "*Liquefaction Hazard*" at section *Files of type*, and then import the map file from the folder where is located.

Liquefaction	n Hazard Model Seismic Hazard Model
A/LIQUE	select the file FACT-INPUT-DATA/21_User-Defined Liquefaction Hazard/User-Defined-Map_Liquefaction-Hazard-Level.txt Browse
	Open User-Defined Liquefaction Hazard File
	Name Wy Computer User-Defined-Map_Liquefaction-Hazard-Level.txt User-Defined-Map_Liquefaction-Potential-Index(LPI).txt User-Defined-Map_Liquefaction-Severeity-Number(LSN).txt User-Defined-Map_Probability-Of-Liquefaction(PL).txt
	File name: Open
	Files of type: Liquefaction Hazard (*.txt) Cancel Liquefaction Hazard (*.txt) Liquefaction Severity Number (LSN) (*.txt) Liquefaction Potential Index (LPI) (*.txt)

In user-supplied maps in terms of Liquefaction Hazard indicator, three qualitative levels of hazard classification are used for range labels: Non-susceptible, No Liquefaction, and Liquefaction. Below is an example of user-supplied liquefaction hazard map in terms of susceptibility and which can be imported as unformatted TXT file.

Exam	Example_User-Defined-Map_Liquefaction-Hazard-Level.bt - Notepad								×
File Edi	File Edit Format View Help								
#Lique	#Liquefaction Hazard for a given site for 475 Years Return Period								^
# In 4th Column: 0: Non-susceptible / 1: No Liquefaction / 2: Liquefaction									
#ID	Longitude	Latitude	Liquefaction Hazard						
1	24.024000	71.028000	0						
2	24.047000	71.027000	0						
3	24.654000	70.988000	0						
4	24.677000	70.986000	0						
5	24.747000	70.982000	1						
6	24.980000	70.966000	1						~
<									>
				Unix (LF)	Ln 1, Col 25	100%			

2.2.2.1.2 User-Supplied Liquefaction Severity Number (LSN) Map

To import map in terms of Liquefaction Severity Number (LSN) indicator: user is first required to select "*Liquefaction Hazard*" at section *Files of type*, and then import the map file from the folder where is located.

pe of Analysis and Geographical Liquefaction Hazard Model Liquefaction profile type Please select the file A/LIQUEFACT-INPUT-DAT/	Region Hazard Data Input Seismic Hazard Model -Defined -/21 User-Defined Liquefaction H	Risk Data Input	iction-Hazard-Level.txt	Browse
Cook in:	r-Defined Liquefaction Hazard D:\Dropbox (NORSAR)\2016 mputer Wame User-Defined- User-Defined- User-Defined-	File _HORDefined Liquefaction Haz Map_Liquefaction-Hazard-Lev Map_Liquefaction-Potential-II Map_Liquefaction-Severeity-N Map_Probability-Of-Liquefact	vel.bt ndex(LPI).bt Number(LSN).bt ion(PL).bt	×
File name:	<			> Open
Files of type:	Liquefaction Severity Number (LS Liquefaction Hazard (*.txt) Liquefaction Severity Number (LS Liquefaction Potential Index (LPI Probability of Liquefaction (PL) (*	IN) (*.txt) IN) (*.txt) IN) (*.txt) txt)	•	Cancel

In user-supplied maps in terms of LSN indicator, five qualitative levels of hazard classification are used for range labels: Non-Liquefaction Risk, Low Liquefaction Risk, Moderate Liquefaction Risk, High Liquefaction Risk, and Very High Liquefaction Risk. Below is an example of user-supplied liquefaction hazard map in terms of LSN and which can be imported as unformatted TXT file.

Exam	ple_User-Defined-Map_	Liquefaction-Severeit	y-Number(LSN).txt - Notepad						- 0	×	
File Edit	Format View He	lp									
#Liquef	action Severity	Number (LSN)	for a given site for	475 Years Return	Period						^
# In 4t	h Column: 0: No	n-Liquefaction	Risk / 1: Low Lique	faction Risk / 2:	Moderate Liquefaction	🛛 Risk / 3: High	Liquefaction Risk / 4: ve	ry High Liqu	efaction	Risk	
#ID	Longitude	Latitude	LSN-Classificati	on							
1	24.024000	71.028000	0								
2	24.047000	71.027000	0								
3	24.654000	70.988000	1								
4	24.677000	70.986000	1								
5	24.747000	70.982000	2								
6	24.980000	70.966000	2								\mathbf{v}
<										>	
					Unix (LF)		Ln 1, Col 40	100%			

2.2.2.1.3 User-Supplied Liquefaction Potential Index (LPI) Map

To import map in terms of Liquefaction Potential Index (LPI) indicator: user is first required to select "*Liquefaction Hazard*" at section *Files of type*, and then import the map file from the folder where is located.

In user-supplied maps in terms of LPI indicator, five qualitative levels of hazard classification are used for range labels: Non-Liquefaction Risk, Low Liquefaction Risk, Moderate Liquefaction Risk, High Liquefaction Risk, and Very High Liquefaction Risk. Below is an example of user-supplied liquefaction hazard map in terms of LPI and which can be imported as unformatted TXT file.

💭 Examp	le_User-Defined-Map	Liquefaction-Potentia	al-Index(LPI).txt - Notepad					- 0	×	7
File Edit	Format View He	lp								
#Liquef	action Potentia	l Index (LPI)	for a given site for 475	Years Return Period					-	•
#In 4th	Column: 0: Non	-Liquefaction	Risk / 1: Low Liquefacti	on Risk / 2: Moderate	Liquefaction Risk / 3: High	n Liquefaction Risk / 4: ver	ry High Liquef	action R	isk	
#ID	Longitude	Latitude	LPI-Classification							
1	24.024000	71.028000	0							
2	24.047000	71.027000	0							
3	24.654000	70.988000	1							
4	24.677000	70.986000	1							
5	24.747000	70.982000	2							
6	24.980000	70.966000	2						~	1
<									>	
					Unix (LF)	Ln 1, Col 40	100%			

2.2.2.1.4 User-Supplied Probability of Liquefaction (PL) Map

To import map in terms of Probability of Liquefaction (PL) indicator: user is first required to select "*Liquefaction Hazard*" at section *Files of type*, and then import the map file from the folder where is located.

ype of Analysis and Geographical Regio	n Hazard Data Input	Risk Data Input		
Liquefaction Hazard Model Seisn	nic Hazard Model			
Please select the file				
A/LIQUEFACT-INPUT-DATA/21_I	Jser-Defined Liquefaction H	lazard/User-Defined-	Map_Liquefaction-Hazard-Level.	txt Browse
Open User-Defi	ned Liquefaction Hazard	File		×
Look in: JD My Comput abdel	: 'Dropbox (NORSAR) \2016 er Name User-Defined- User-Defined- User-Defined-	i_HORDefined Liqu Map_Liquefaction Map_Liquefaction Map_Liquefaction Map_Probability-C	efaction Hazard Q Q A Hazard-Level.btt Potential-Index(LPI).btt Severeity-Number(LSN).btt ff-Liquefaction(PL).btt	
File name:				Open
Files of type: Proba Lique Lique Lique	biity of Liquefaction (PL) (* faction Hazard (*.txt) faction Severity Number (LS faction Potential Index (LPI	F.txt) SN) (*.txt)) (*.txt)		Cancel
Proba	biity of Liquefaction (PL) (*	.txt)		

In user-supplied maps in terms of PL indicator, five qualitative levels of hazard classification are used for range labels: Non-Liquefaction Risk, Low Liquefaction Risk, Moderate Liquefaction Risk, High Liquefaction Risk, and Very High Liquefaction Risk. Below is an example of user-supplied liquefaction hazard map in terms of PL and which can be imported as unformatted TXT file.

Exam	ple_User-Defined-N	1ap_Probability-Of-Liquef	action(PL).txt - Notepad				-		×	1
File Edit	t Format View	Help								
#Probab	oility of Liqu	uefaction (PL) for	r a given site for 475	Years Return Period						~
# In 4t	th Column: 0:	Non-Liquefaction	Risk / 1: Low Liquefa	tion Risk / 2: Moderat	e Liquefaction Risk / 3: Hi	gh Liquefaction Risk / 4: ve	ery High Liquefac	tion R	Risk	
#ID	Longitude	Latitude	PL-Classification							
1	24.024000	71.028000	0							
2	24.047000	71.027000	0							
3	24.654000	70.988000	1							
4	24.677000	70.986000	1							
5	24.747000	70.982000	2							
6	24.980000	70.966000	2							1
<									>	
					Unix (LF)	Ln 1, Col 38	100%			

2.2.2.2 Pre-Defined Liquefaction Hazard

The concept of "Pre-Defined" for liquefaction hazard consists of using the embedded Geo-referenced macrozonation liquefaction hazard maps covering the European territory (Carlo et al 2018). Note that this type of analysis is recommended only if users want to conduct liquefaction hazard analysis at continental or large region-scale level. The macrozonation maps are characterized by a return period of 475, 975 and 2475 years, and use three qualitative levels of hazard classification for range labels: *Non-susceptible, No Liquefaction*, and *Liquefaction*.

NOTE: In the LIQUEFACT software, when user-supplied liquefaction hazard maps are used through the selection of <u>*Pre-Defined*</u> option, location-specific levels of liquefaction hazard are not interpolated, and closest location-specific to a given asset is assigned for the evaluation of liquefaction risk.

Type of Analysis and Geographical Region	Hazard Data Input	Risk Data Input	
Liquefaction Hazard Model Seismic	Hazard Model		
Liquefaction profile type Pre-Defined	•		
 Select the return period 			
0 475 years			
975 years			
2475 years			

2.2.3 Seismic Hazard Model

A key point in liquefaction hazard assessment is the provision of seismic ground motion, in general, generated and integrated in the form of contour maps and location-specific seismic demands. In the LIQUEFACT software, input data related to earthquake hazard is required only if quantitative liquefaction assessment is carried-out. When <u>User-Defined</u> or <u>Pre-Defined</u> in the <u>Liquefact Hazard</u> <u>Model</u> module are selected, the module of <u>Seismic Hazard Model</u> is not activated as no information related to earthquake is needed.

2.2.3.1 Seismic Hazard Analysis

In the LIQUEFACT software, the spatial distribution of ground motion can be determined using one of the following methods or sources:

- Scenario Earthquake (repeat of any potential earthquake event);
- Pre-Defined Uniform Hazard map (probabilistic ground motion maps e.g. Share.eu);
- User-Defined Seismic Hazard map (can be based on probabilistic or deterministic ground motion analysis).

Type of Analysis and	Geographical Region	Hazard Data Input	Risk Data Input	
Liquefaction Haza	ard Model Seismic	Hazard Model		
Hazard Analysis	Scenario Earthquake Scenario Earthquake	-		
Please input	Pre-Defined Uniform User-Defined Seismic	Hazard Hazard		

2.2.3.1.1 Scenario Earthquake

A scenario earthquake can be either an historic earthquake or a hypothetical earthquake and can be defined using a set of parameters. The software assumes a simple rectangular rupture plane where the size of the rectangle is decided by the earthquake magnitude through the Wells and Coppersmith (1994) relations.

The earthquake source parameters can be defined using the screen that comes up once Scenario Earthquake option is selected from the Seismic Hazard Pull-down Menu and the Seismic Hazard Tab is selected.

Liquefaction Hazard Model	Seismic Hazard Model											
Hazard Analysis Scenario Earthquake												
Please input the Earthquake Parameters												
Latitude		Longitude										
Focal Depth (km)		Magnitude										
Strike*	0 : north	Dip*	0: horizontal									
A	productivity	В	b-value									
Fault Mechanism	Normal 🔻											
Attenuation Table	Boore and Atkinson (2008	8) NGA 🔻 Vie	ew									
*Positive clockwis	e.											

These earthquake parameters are:

Latitude and Longitude	Latitude and Longitude of the epicenter of the scenario earthquake in degrees
	(defined using decimals). Note: In case of large ruptures this should be given as the
	center point of the presumed rupture rectangle.
Focal Depth	Focal depth in km. The depth corresponds to the depth at the longitude/latitude
	given above.
Magnitude	Magnitude of the scenario earthquake
Strike	Fault orientation in degrees from North.
Dip	Dip angle in degrees from the horizontal plane.
Attenuation	Attenuation relationships (also called Ground Motion Prediction Equations -
relationships	GMPE) are used to calculate ground shaking demand for rock sites. The
	attenuation models embedded in the LIQUEFACT software represents response
	spectral acceleration ordinates, Sa(T), at 5% elastic damping. The values of the
	spectral acceleration are in m/s2. The influence of any earthquake is set to zero for
	distances exceeding 300 km.

User-Defined Attenuation Tables

Introducing your own attenuation model is possible and easy. The format of attenuation model follows the one described below and is imported as an unformatted text file (e.g. from WordPad). The example shows the first of 9 blocks (9 periods are used; values of the periods are in blue color). Each block specifies ground shaking prediction (in yellow color) computed for 10 magnitude (rows corresponding to Mw of 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0 and 9.5) and 20 predefined distances (in green color). [texts in red are just for comments].

Attenuation Table	User Defined	•	View	
Browse				

Periods	9	one block	for each p	eriod (sha	wn in blue	color)	_													
Depth	All	mulcating	, unat the r	elation is i	nuepenue	ni oi uepu														
Distance-type	2	indicating	; that dista	nce type is	i Epicentra	l (see table	e below fo	r other typ	e of distan	ces)										
Sigma	0.56	sigma of t	he GMPE	model to b	e used for	computati	ion of annu	al frequer	ncy of exce	edance										
Distances	1.00E+00	1.35E+00	1.82E+00	2.46E+00	3.32E+00	4.49E+00	6.06E+00	8.18E+00	1.10E+01	1.49E+01	2.01E+01	2.72E+01	3.67E+01	4.95E+01	6.69E+01	9.03E+01	1.22E+02	1.65E+02	2.22E+02	3.00E+02
1.00E-03																				
1.73E+00	1.17E+00	1.12E+00	1.04E+00	9.44E-01	8.31E-01	7.11E-01	5.96E-01	4.89E-01	3.94E-01	3.12E-01	2.41E-01	1.81E-01	1.30E-01	8.91E-02	5.68E-02	3.30E-02	1.69E-02	7.25E-03	2.47E-03	for Mw=5.0
2.40E+00	1.30E+00	1.28E+00	1.24E+00	1.18E+00	1.10E+00	9.87E-01	8.64E-01	7.36E-01	6.11E-01	4.96E-01	3.92E-01	3.00E-01	2.21E-01	1.54E-01	1.00E-01	5.91E-02	3.08E-02	1.35E-02	4.68E-03	for Mw=5.5
3.16E+00	1.37E+00	1.36E+00	1.34E+00	1.32E+00	1.28E+00	1.21E+00	1.12E+00	1.00E+00	8.72E-01	7.33E-01	5.97E-01	4.69E-01	3.53E-01	2.51E-01	1.67E-01	1.01E-01	5.33E-02	2.38E-02	8.41E-03	for Mw=6.0
3.96E+00	1.38E+00	1.38E+00	1.38E+00	1.37E+00	1.35E+00	1.32E+00	1.28E+00	1.20E+00	1.11E+00	9.79E-01	8.34E-01	6.80E-01	5.28E-01	3.86E-01	2.62E-01	1.61E-01	8.74E-02	3.98E-02	1.43E-02	for Mw=6.5
4.42E+00	1.25E+00	1.25E+00	1.25E+00	1.25E+00	1.24E+00	1.23E+00	1.21E+00	1.18E+00	1.14E+00	1.06E+00	9.55E-01	8.22E-01	6.69E-01	5.09E-01	3.58E-01	2.27E-01	1.26E-01	5.86E-02	2.16E-02	for Mw=7.0
4.56E+00	1.01E+00	1.01E+00	1.01E+00	1.01E+00	1.01E+00	1.00E+00	9.97E-01	9.86E-01	9.68E-01	9.37E-01	8.86E-01	8.09E-01	7.01E-01	5.68E-01	4.21E-01	2.80E-01	1.61E-01	7.78E-02	2.95E-02	for Mw=7.5
4.70E+00	7.25E-01	7.25E-01	7.25E-01	7.25E-01	7.24E-01	7.23E-01	7.21E-01	7.18E-01	7.12E-01	7.01E-01	6.81E-01	6.49E-01	5.97E-01	5.19E-01	4.17E-01	2.99E-01	1.85E-01	9.48E-02	3.78E-02	for Mw=8.0
4.85E+00	4.01E-01	4.01E-01	4.01E-01	4.01E-01	4.00E-01	4.00E-01	4.00E-01	3.99E-01	3.97E-01	3.94E-01	3.88E-01	3.79E-01	3.62E-01	3.34E-01	2.91E-01	2.31E-01	1.60E-01	9.13E-02	4.03E-02	for Mw=8.5
5.00E+00	1.31E-01	1.31E-01	1.31E-01	1.31E-01	1.31E-01	1.31E-01	1.31E-01	1.31E-01	1.30E-01	1.30E-01	1.29E-01	1.27E-01	1.24E-01	1.19E-01	1.09E-01	9.51E-02	7.47E-02	4.99E-02	2.62E-02	for Mw=9.0
5.16E+00	1.58E-02	1.58E-02	1.58E-02	1.58E-02	1.57E-02	1.57E-02	1.57E-02	1.57E-02	1.57E-02	1.57E-02	1.56E-02	1.55E-02	1.53E-02	1.49E-02	1.43E-02	1.32E-02	1.14E-02	8.86E-03	5.73E-03	for Mw=9.5
5.00E-02																				
3.54E+00	2.32E+00	2.21E+00	2.05E+00	1.85E+00	1.61E+00	1.36E+00	1.12E+00	9.10E-01	7.23E-01	5.64E-01	4.29E-01	3.17E-01	2.25E-01	1.52E-01	9.53E-02	5.45E-02	2.74E-02	1.16E-02	3.90E-03	for Mw=5.0
4.79E+00	2.49E+00	2.44E+00	2.36E+00	2.23E+00	2.06E+00	1.84E+00	1.60E+00	1.35E+00	1.11E+00	8.87E-01	6.92E-01	5.23E-01	3.79E-01	2.61E-01	1.67E-01	9.77E-02	5.02E-02	2.17E-02	7.43E-03	for Mw=5.5
5.99E+00	2.44E+00	2.42E+00	2.39E+00	2.34E+00	2.26E+00	2.14E+00	1.97E+00	1.76E+00	1.51E+00	1.26E+00	1.02E+00	7.89E-01	5.87E-01	4.13E-01	2.71E-01	1.62E-01	8.47E-02	3.74E-02	1.31E-02	for Mw=6.0
6.925+00	2 265+00	2 255+00	2 245+00	2 225+00	2 205+00	2 155+00	2.075+00	1.955+00	1 795+00	1 575+00	1 225+00	1.075+00	9 25E 01	5 995 01	4 025 01	2.455.01	1 225 01	5 925 02	2 125 02	for Mw-6 F

Type of distance to be used for the attenuation table (see Provision of Seismic Demand)

Value	Distance Type
1	for (or blank) Focal
2	for Epicentral
3	for Joyner and Boore
4	for Closest to rupture area (Rrup)

2.2.3.1.2 Pre-Defined Seismic Uniform Hazard

The SHARE project probabilistic seismic hazard contour maps for Euro-Mediterranean Region has been embedded in the LIQUEFACT software, to be used as basis to ground shaking in Pre-Defined Uniform Hazard type analysis. The SHARE maps were produced for different return periods: 73 years (50% in 50 years), 102 years (39% in 50 years), 475 years (10% in 50 years), 975 years (5% in 50 years), 2475 years (2% in 50 years), 4975 years (1% in 50 years). The hazard values are referenced to a rock velocity of V_{5,30} = 800 m/s at 30 m depth. SHARE models earthquakes as finite ruptures and includes all events with magnitudes MW≥4.5 in the computation of hazard values. SHARE introduces an innovative weighting scheme that reflects the importance of the input data sets considering their time horizon, thus emphasizing the geologic knowledge for products with longer time horizons and seismological data for shorter ones.

Incorporation of SHARE hazard maps in the LIQUEFACT software

In the LIQUEFACT software, when ground motion is based on the pre-defined hazard map, locationspecific values of ground shaking demands are interpolated between PGA or spectral acceleration contours.

2.2.3.1.3 User-Defined Seismic Hazard

User-supplied PGA and spectral acceleration contour maps, e.g. resulted from a specific local or regional seismic response analysis, may also be used. In this case, the user must provide all contour maps in a pre-defined digital CSV, unformatted TXT or SHAPE file and a specific format as illustrated in Table below: a file with 14 columns including: ID, Longitude, Latitude, PGA, Sa(T=0.10s), Sa(T=0.15s), Sa(T=0.20s), Sa(T=0.25s), Sa(T=0.30s), Sa(T=0.50s), Sa(T=0.75s), Sa(T=1.00s), Sa(T=2.00s), Sa(T=3.00s), Sa(T=4.00s)]. All the values of PGA and spectral acceleration must be in [g] unit. The user-supplied hazard maps can be generated for rock site class condition or with including soil amplification.

Liquefaction Haz	ard Model	Seismic Hazard Model]									
Hazard Analysis User-Defined Seismic Hazard 🔻												
Please selec	t the file —											
Seismic grour	nd motion file	2										
Push browse	e button to e	nter seismic ground motic	n file		Browse							

# Examp	ole of User-Su	oplied Gro	und Motio	on Parameters f	or a specific reg	ion, generated	for 475 Years R	eturn Period (1	0% in 50 years)					
#ID	Longitude	Latitude	PGA[g]	Sa(T=0.10s)[g]	Sa(T=0.15s)[g]	Sa(T=0.20s)[g]	Sa(T=0.25s)[g]	Sa(T=0.30s)[g]	Sa(T=0.50s)[g] Sa	a(T=0.75s)[g]	Sa(T=1.00s)[g]	Sa(T=2.00s)[g]	Sa(T=3.00s)[g]	Sa(T=4.00s)[g]
1	5.182134	59.9	0.085089	0.191032	0.197592	0.186229	0.158021	0.136942	0.078021	0.047766	0.032759	0.011382	0.004508	0.002388
2	26.482134	63.4	0.004324	0.012001	0.013011	0.013093	0.011202	0.009674	0.005249	0.002941	0.001921	0.000937	0.000901	0.000905
3	24.482134	59.2	0.018039	0.04895	0.050919	0.050172	0.043283	0.037249	0.021894	0.012977	0.008893	0.002714	0.000902	0.0009
4	38.082134	39.2	0.192157	0.420152	0.454613	0.409887	0.3779	0.346666	0.233683	0.172791	0.12924	0.067278	0.048176	0.031169
5	19.382134	65.8	0.005734	0.014947	0.016497	0.016498	0.01396	0.012418	0.006783	0.003899	0.002596	0.000913	0.0009	0.000905
6	30.682134	65	0.009605	0.02673	0.028209	0.027507	0.023593	0.020385	0.011248	0.006424	0.004184	0.001207	0.000902	0.000902
7	23.182134	62.9	0.003514	0.009531	0.010578	0.010746	0.009104	0.007991	0.004268	0.002422	0.001602	0.000932	0.000902	0.000904
8	22.382134	50.5	0.018513	0.043666	0.048242	0.047676	0.042521	0.037382	0.02316	0.015046	0.010262	0.003713	0.001884	0.000914
9	14.382134	36.5	0.094162	0.199499	0.22003	0.202276	0.187579	0.170083	0.106751	0.072661	0.051912	0.02355	0.015128	0.008142
10	29.582134	45	0.07564	0.159991	0.170155	0.161404	0.142743	0.134295	0.094509	0.062557	0.044919	0.018004	0.009658	0.003721
11	-21.61787	62.7	0.067937	0.131042	0.152307	0.155848	0.150978	0.141428	0.101899	0.081894	0.061291	0.030521	0.022545	0.01309
12	-23.71787	64.4	0.163816	0.366356	0.381414	0.354818	0.319045	0.279772	0.186452	0.132528	0.096412	0.04713	0.031904	0.018621
13	16.482134	46.7	0.07059	0.152713	0.169925	0.158087	0.141243	0.129766	0.081599	0.056201	0.039323	0.017174	0.011102	0.005845
14	16.982134	50.6	0.030479	0.070876	0.073818	0.070435	0.06102	0.052235	0.030042	0.018069	0.012193	0.003948	0.001752	0.0009

Note that in the LIQUEFACT software when ground motion is based on user-supplied maps, locationspecific values of ground shaking demands are interpolated between PGA or spectral acceleration contours.

2.2.3.2 Ground Amplification (Response Spectrum)

The values of ground shaking demand obtained from the different methodologies/options described above are in general computed for rock condition, and which then amplified by factors based on local soil conditions. This can be done using one of the following alternatives:

- Use of response spectrum *Code-Design*: where Eurocode-8 spectrum types are incorporated in the LIQUEFACT software.
- Use of **Site-Specific** option which requires Vs profiles supplied by the user.

2.2.3.2.1 Code-Design

Two different types of design spectra are provided within Eurocode 8 (CEN, 2004). This is mainly done in order to account for the differing level of seismic hazard in Europe and the different earthquake types susceptible to occur. In case that earthquakes with a surface-wave magnitude Ms > 5.5 are expected, it is suggested to use Spectrum Type 1, else (Ms \leq 5.5) Type 2. The question which spectrum type to choose for a specific region should be based upon "(...) the magnitude of earthquakes that are actually expected to occur rather than conservative upper limits defined for the purpose of probabilistic hazard assessment".

Below is an example of user-supplied data for soil classification in terms of EC8 code design and which can be imported as tab-separated CSV files, unformatted TXT files or SHAPE files (ESRI defined formats).

ImportData_GroundAmp_Cod	e-Design.txt - Notepad				_	×
File Edit Format View Help)					
#ID-Ground-Amp-Profile	Latitude	Longitude	Soil Type			^
G001	44.79871161	11.40438873	EC8-Type-1-C			
G002	44.79871161	11.40520821	EC8-Type-1-C			
G003	44.79871161	11.4060277	EC8-Type-1-C			
G004	44.79871161	11.40684718	EC8-Type-1-D			
G005	44.79871161	11.40766667	EC8-Type-1-D			
G006	44.79871161	11.40848616	EC8-Type-1-D			
G007	44.79871161	11.40930564	EC8-Type-1-D			
G008	44.79871161	11.41012513	EC8-Type-1-D			
G009	44.79871161	11.41094462	EC8-Type-1-D			~
<						>
			Windows (CRLF)	Ln 2, Col 1	100%	

The imported ground amplification profiles data can be edited and modified in the software, and the location of the profiles can also be viewed on the GIS platform of the LIQUEFACT software.

NOTE: In case that user-supplied maps already include soil amplification, then in Response Spectrum section Soil Type to be defined as class A (i.e. *EC8-Type-1-A* or *EC8-Type-2-A*) referencing rock site condition. This means that the user-supplied ground motion values will not be amplified again (it will simply be multiplied by 1).

2.2.3.2.2 Site-Specific

- In the case of Scenario Earthquake, LIQUEFACT software is using the embedded attenuation relationships to compute the corresponding ground motion estimates using average shearwave velocity V_{S,30} in order to amplify the ground motion. This V_{S,30} value is user-supplied as input data.
- In the case of Pre-Defined or User-Defined Seismic Hazard (where ground motion map for rock site condition is already computed in terms of PGA values and full spectral acceleration contours), the ground motion is amplified using the soil amplification factors provided by IBC-2006 (ICC, 2006) by assigning a V_{S,30} value that agrees with the soil type.

Below is an example of user-supplied data for soil classification in terms of $V_{S,30}$ values and which can be imported as tab-separated CSV files, unformatted TXT files or SHAPE files (ESRI defined formats).

LIQUEFACT Project – EC GA no. 700748

s received funding uropean Union's o research and rogramme under n No. 700748		LIQU	EFACT Softw	/are – Techr	nical Manual	Deliverat and Appli
ImportData GroundAmp Site	Specific.txt - Notepad					
File Edit Format View Help	þ					
File Edit Format View Help	Latitude	Longitude	Soil [Vs30	in m/s]		^
<pre>inponded_ordenannp_stelle ile Edit Format View Help ID-Ground-Amp-Profile 001</pre>	Latitude 44.79871161	Longitude 11.40438873	Soil [Vs30 193	in m/s]		^
File Edit Format View Help FID-Ground-Amp-Profile 1001	Latitude 44.79871161 44.79871161 44.79871161	Longitude 11.40438873 11.40520821 11.4060277	Soil [Vs30 193 193 193	in m/s]		^
File Edit Format View Help ID-Ground-Amp-Profile 001 002 003 004	Latitude 44.79871161 44.79871161 44.79871161 44.79871161	Longitude 11.40438873 11.40520821 11.4060277 11.40684718	Soil [Vs30 193 193 193 193 163	in m/s]		^
File Edit Format View Help ID-Ground-Amp-Profile 1001 1002 1003 1004 1005	Latitude 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161	Longitude 11.40438873 11.40520821 11.4060277 11.40684718 11.40766667	Soil [Vs30 193 193 193 163 162	in m/s]		^
ile Edit Format View Help ID-Ground-Amp-Profile 001 002 003 004 005 006	Latitude 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161	Longitude 11.40438873 11.40520821 11.4060277 11.40684718 11.40766667 11.40848616	Soil [Vs30 193 193 193 163 162 158	in m/s]		^
File Edit Format View Help ID-Ground-Amp-Profile 001 002 003 004 005 006 007	Latitude 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161	Longitude 11.40438873 11.40520821 11.4060277 11.40684718 11.40766667 11.40848616 11.40930564	Soil [Vs30 193 193 163 162 158 153	in m/s]		^
File Edit Format View Help FID-Ground-Amp-Profile 6001 6002 6003 6004 6005 6006 6007 6008	Latitude 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161 44.79871161	Longitude 11.40438873 11.40520821 11.4060277 11.40684718 11.40766667 11.40848616 11.40930564 11.41012513	Soil [Vs30 193 193 163 162 158 153 152	in m/s]		^

The imported ground amplification profiles data can be edited and modified in the software, and the location of the profiles can also be viewed on the GIS platform of the LIQUEFACT software.

Respo	onse Spectrum Site-Sp	pecific 🔹	•	
	Ground Amp Profile	Latitude	Longitude	Soil (Vs30 in m/s)
1	G001	44.798712	11.404389	193.00
2	G002	44.798712	11.405208	193.00
3	G003	44.798712	11.406028	193.00
4	G004	44.798712	11.406847	163.00
5	G005	44.798712	11.407667	162.00
Ac	dd row Delete rows	Impor	t	

NOTE:

- The imported ground amplification profiles data can be edited and modified in the software.
- In case that user-supplied maps already include soil amplification, then in Response Spectrum section values of velocity V_{s,30} >800m/s, referencing rock site condition, to be assigned for soil.

This means that the user-supplied ground motion values will not be amplified again (it will simply be multiplied by 1).

2.3 Risk Data Input

For Risk Analysis, depending on what level of analysis is chosen and output is requested, different numbers of input files should be imported. Two categories of data are to be provided: input data for *Risk Modelling* and input data for *Assets Modelling* (Portfolio Data).

2.3.1 Risk Modelling

In the section Risk Assessment (in Module Type of Analysis and Geographical Region):

 If <u>Physical impact</u> is selected: then in **Risk Modelling** only <u>Vulnerability Data Input</u> module is activated, and users will be required to import vulnerability models and portfolio data with structural characteristics-related information.

Lococomont analysis	Hanned & Diek
Assessment analysis	
usk assessment	Physical Impact
ritigation analysis	None
e of Analysis and Geo	graphical Region Hazard Data Input Risk Data Input
	,
Risk Modelling Po	tfolio Data
Vulnerability Data I	Economic Business Activity Data Input
Path to fragility file:	Browse
Vulnerability Model	Liquefaction Conventional

 If <u>Physical impact & Economic</u> is selected: in **Risk Modelling** both <u>Vulnerability Data Input</u> and <u>Economic & Business Activity Data Input</u> are activated. In this case, users will also be required to import economic and business activity input data, in addition to the vulnerability models and portfolio data with structural characteristics-related information.

Type of Analysis and Geographical Region Hazard Data Input Risk Data Input
□ Type of analysis
Assessment analysis Hazard & Risk 🔻
Risk assessment Physical Impact & Economic 🔻
Mitigation analysis None
Type of Analysis and Geographical Region Hazard Data Input Risk Data Input
Risk Modelling Portfolio Data
Vulnerability Data Input Economic Business Activity Data Input
Path to fragility files Browse
Vulnerability Model Liquefaction Conventional
Typology Period T1 Ground Shaking Fragility Fragility IM_GS Capacity
Add row Delete rows Show table View Import Export Profile assignment Closest Distance to Point Without Internolation

2.3.1.1 Vulnerability Data Input

In this module user is required to define the followings:

- 1. Vulnerability model to be used for the computation of damage and loss ratio on asset/assets (buildings or infrastructures). The software incorporates options to define vulnerability model that will be used for risk analysis:
 - *Liquefaction*: where user-supplied liquefaction fragility models are to be imported.
 - <u>Ground Shaking and Liquefaction</u>: where user-supplied ground shaking fragility models are imported in addition to liquefaction fragility models.

- <u>Liquefaction (Built-in)</u>: to make use of the pre-defined fragility models embedded in the software.

e of Analysis and Geographic	A Region Hazard Data Input	Risk Data Input	
Risk Modelling Portfolio D	ata		
Vulnerability Data Input	Economic Business Activity Data I	input	
Path to fragility files			Browse
Vulnerability Model Liquef	action 🔻 C	Conventional 🔻	
Typology Period Liquef Groun	action (Built-In) y IN d Shaking and Liquefaction	M_Lq	
Add row Delete r	ows Show table View	Import	Export
Profile assignment Closes	Distance to Point Without Internal:	ation T	
Closes	rostance to Point without Interpole		

- 2. Select method of Loss Analysis to be implemented for the computation of damage and loss ratio.
- 3. Path to the fragility files that will be used for the computation of damage and loss ratio.
- 4. Definition how liquefaction demand will be assigned (through *Profile assignment*) to a given asset for the computation of damage and loss ratio.

2.3.1.1.1 Liquefaction Vulnerability Model

For the implementation of *Liquefaction* vulnerability analysis, user-supplied *List of Liquefaction Fragility* models should be imported as following:

- Click the <u>Import</u> button to import the file with list of the Liquefaction fragility models. The file can be imported as tab-separated CSV or unformatted TXT, containing the following information:
 - *Typology*: code-name of a given material and structural system typology of the structure/infrastructure;
 - Period(T1): fundamental periods of the structures/infrastructures [in sec];
 - LiquefactionFragility: file names of liquefaction fragility models

- LQF_IM: intensity measure of the liquefaction models (it can be PGA, Sa, LSN, Differential Settlement -GD).

Example of List of Liquefaction Fragility models file imported as CSV/TXT

*ImportData_Fra			\times				
File Edit Format	View Help						
#Typology RCFlr-LC RCFmr-LC RCFhr-LC URMlr-PC URMmr-PC	Period(T1) 0,16 0,32 0,46 0,10 0,25	LiquefctionF LQF_RCF1r-LC LQF_RCFmr-LC LQF_RCFhr-LC LQF_URM1r-PC LQF_URM1r-PC	ragili	ty(LQF)	LQF_1 GD GD GD GD GD	IM	~
							~
<							>
		Ln 6, Col 31	100%	Windows (CRLF)	UTF	-8	.:

1 1		Track -				
vui	nerability Data	a input E	conomic Business Activity	Data Input		
Pat	h to fragility fi	les				Browse
Vuli	nerability Mode	el Liquefact	ion	 Conventional 	•	
	Туроїоду	Period T1	Liquefaction Fragility	Fragility IM_Lq		
1	RCFIr-LC	0.16	LQF_RCFIr-LC	GD		
2	RCFmr-LC	0.32	LQF_RCFmr-LC	GD		
3	RCFhr-LC	0.46	LQF_RCFhr-LC	GD		
4	URMIr-PC	0.10	LQF_URMIr-PC	GD		
5	URMmr-PC	0.25	LQF_URMmr-PC	GD		
		Delete row	s Show table V	iew	ort	Export

The imported list of Liquefaction fragility models can be modified or updated by double click on any selected row representing a given liquefaction fragility model. It is also possible to Add or Delete any row/model. After any editing, the list of fragility models file can be exported and saved as tab-separated CSV by clicking on *Export* button.

sk N	Modelling F	Portfolio Data	3			
Vul	nerability Data	a Input E	conomic Business Activity	Data Input		
Pat	h to fragility fi	les				Browse
Vuli	nerability Mod	el Liquefact	ion	 Conventional 	•	
	Typology	Period T1	Liquefaction Fragility	Fragility IM_Lq		
1	RCFIr-LC	0.16	LQF_RCFIr-LC	GD		
2	RCFmr-LC	0.32	LQF_RCFmr-LC	GD		
3	RCFhr-LC	0.46	LQF_RCFhr-LC	GD		
4	URMIr-PC	0.10	LQF_URMIr-PC	GD		
5	URMmr-PC	0.25	LQF_URMmr-PC	GD		
	Add row	Delete row	s Show table V	iew Imp	ort	Export
	CI	d	the second second second second second	tornalation -		

 Select which method of *Loss Analysis* to be implemented: LIQUEFACT software incorporates two procedures for the computation of physical damage and loss ratio for a given liquefaction demand: *Conventional* procedure or *ESP-based* (Equivalent Soil Profile based) method.

Vul	nerability Data	Input E	conomic Business Activity	Data Input		
Pat	h to fragility fi	les				Browse
	nerability Mod	al Liquefacti	on.	 Conventional 	•	brombern
vui				Conventional		
	lypology	Period 11	Liquefaction Fragility	Fra ESP-Based		
1	RCFIr-LC	0.16	LQF_RCFIr-LC	GD		
2	RCFmr-LC	0.32	LQF_RCFmr-LC	GD		
3	RCFhr-LC	0.46	LQF_RCFhr-LC	GD		
4	URMIr-PC	0.10	LQF_URMIr-PC	GD		
5	URMmr-PC	0.25	LQF_URMmr-PC	GD		
	Add row	Delete row	s Show table	/iew	ort	Export.
	Add row	Delete rows	Show table	/iew Impo	ort	Export

3. At the section <u>Profile assignment</u>, users can define how liquefaction severity indicators resulted from liquefaction profiles will be assigned to the assets (buildings, infrastructures) for the computation of liquefaction demand, the associated damage and loss ratio. Users will have to choose one of the following options:

<u>Closest Distance to Point Without Interpolation</u>: the assigned value of liquefaction severity indicator is directly resulted from the closest liquefaction profile at the location of a given asset or the closed to it.

<u>Closest Distance to Point After Interpolation</u>: the assigned value of liquefaction severity indicator is directly resulted from interpolation, at the location of a given asset.

vui	nerability Data		conomic Business Activity	Data Input		
at	h to fragility fi	iles	-			Browse
ul	nerability Mode	el Liquefact	ion	Conventional	•	
1	RCFIr-LC	0.16	Liquefaction Fragility	GD		
2	RCFmr-LC	0.32	LQF_RCFmr-LC_3DLS	GD		
3	RCFhr-LC	0.46	LQF_RCFhr-LC	GD		
4	URMIr-PC	0.10	LQF_URMIr-PC	GD		
5	URMmr-PC	0.25	LQF_URMmr-PC	GD		

2.3.1.1.2 Ground Shaking and Liquefaction Vulnerability Model

By selecting this option, the software will implement loss analysis as following: 1) computation of damage and loss ratio considering liquefaction hazard (in combination with ground shaking); 2) computation of damage and loss ratio considering ground shaking hazard only. Having results from these different analyses will allow the comparison and an extra cross-checking of the results.

For the implementation of <u>Ground Shaking and Liquefaction</u> vulnerability analysis, user-supplied List of Liquefaction Fragility models should be imported as following:

1. Click the <u>Import</u> button to import the file with list of the fragility models. The file can be imported as tab-separated CSV or unformatted TXT, containing the following information:

- *Typology*: code-name of a given material and structural system typology of the structure or infrastructure;
- *Period(T1)*: fundamental periods of the structures/infrastructures [in sec];
- GroundShakingFragility: file names of ground shaking fragility models
- *GSF_IM*: intensity measure of the ground shaking models (it can be PGA, Sa, LSN, Differential Settlement -GD).
- *Capacity*: file names of capacity curves [in meter] and is required to be defined only if ground shaking fragility curves are based on Spectral Displacement (Sd) intensity measure. If not than just write NA.
- LiquefactionFragility: file names of liquefaction fragility models
- *LQF_IM*: intensity measure of the liquefaction models (it can be PGA, Sa, LSN, Differential Settlement -GD).

Example of imported List of Ground Shaking and Liquefaction Fragility models:

/ *ImportData_Fra	gilityFunctions_GSF-LC)F.txt - Notepad						-		×
File Edit Format	View Help									
#Typology RCF1r-LC RCFmr-LC RCFhr-LC URM1r-PC URMmr-PC	Period(T1) 0,16 0,32 0,46 0,10 0,25	GroundShakingFragility(GSF) GSF_RCFlr-LC GSF_RCFmr-LC GSF_RCFhr-LC GSF_URM1r-PC GSF_URMnr-PC	GSF_IM Sd Sd Sd PGA PGA	Capacity GSCap_RCFlr-LC GSCap_RCFmr-LC GSCap_RCFhr-LC NA NA	Lique LQF_R LQF_R LQF_R LQF_U LQF_U	fctio CF1r- CFmr- CFhr- IRM1r- IRM1r-	nFragility(LQF LC LC LC PC PC)	LQF_I GD GD GD GD GD	M ^
<										>
				Ln 6, Col 41		100%	Windows (CRLF)	UTF	-8	

Vul	nerability Data	Input E	conomic Business Activity Dat	a Input			
Pat	h to fragility fi	les					Browse
/ulı	nerability Mode	el Ground S	haking and Liquefaction 🔻	Conventional 🔻			
	Typology	Period T1	Ground Shaking Fragility	Fragility IM_GS	Capacity	Liquefaction Fragility	Fragility IM_Lq
1	RCFIr-LC	0.16	GSF_RCFIr-LC	Sd	GSCap_RCFIr-LC	LQF_RCFIr-LC	GD
2	RCFmr-LC	0.32	GSF_RCFmr-LC	Sd	GSCap_RCFmr-LC	LQF_RCFmr-LC	GD
3	RCFhr-LC	0.46	GSF_RCFhr-LC	Sd	GSCap_RCFhr-LC	LQF_RCFhr-LC	GD
4	URMIr-PC	0.10	GSF_URMIr-PC	PGA	PGA	LQF_URMIr-PC	GD
5	URMmr-PC	0.25	GSF_URMmr-PC	PGA	PGA	LQF_URMmr-PC	GD
	Add row	Delete rows	Show table View.	Import			Export

The imported list of Ground Shaking Liquefaction fragility models can be modified or updated by double click on any selected row representing a given liquefaction fragility model. It is also

possible to Add or Delete any row/model. After any editing, the list of fragility models file can be exported and saved as tab-separated CSV by clicking on *Export* button.

Pat	th to fragility f	iles					Browse		
Vul	Vulnerability Model Ground Shaking and Liquefaction V								
	Typology	Period T1	Ground Shaking Fragility	Fragility IM_GS	Capacity	Liquefaction Fragility	Fragility IM_Lq		
1	RCFIr-LC	0.16	GSF_RCFIr-LC	Sd	GSCap_RCFIr-LC	LQF_RCFIr-LC	GD		
2	RCFmr-LC	0.32	GSF_RCFmr-LC	Sd	GSCap_RCFmr-LC	LQF_RCFmr-LC	GD		
3	RCFhr-LC	0.46	GSF_RCFhr-LC	Sd	GSCap_RCFhr-LC	LQF_RCFhr-LC	GD		
4	URMIr-PC	0.10	GSF_URMIr-PC	PGA	PGA	LQF_URMIr-PC	GD		
5	URMmr-PC	0.25	GSF_URMmr-PC	PGA	PGA	LQF_URMmr-PC	GD		

 Select which method of *Loss Analysis* to be implemented: LIQUEFACT software incorporates two procedures for the computation of physical damage and loss ratio for a given liquefaction demand: *Conventional* procedure or *ESP-based* (Equivalent Soil Profile based) method.

Pat	h to fragility f	les					Browse
Vul	nerability Mod	el Ground S	haking and Liquefaction 🔹	Conventional 🔻			
Γ	Typology	Period T1	Ground Shaking Fragility	Conventional ESP-Based	Capacity	Liquefaction Fragility	Fragility IM_Lq
1	RCFIr-LC	0.16	GSF_RCFIr-LC	Sd	GSCap_RCFIr-LC	LQF_RCFIr-LC	GD
2	RCFmr-LC	0.32	GSF_RCFmr-LC	Sd	GSCap_RCFmr-LC	LQF_RCFmr-LC	GD
3	RCFhr-LC	0.46	GSF_RCFhr-LC	Sd	GSCap_RCFhr-LC	LQF_RCFhr-LC	GD
4	URMIr-PC	0.10	GSF_URMIr-PC	PGA	PGA	LQF_URMIr-PC	GD
5	URMmr-PC	0.25	GSF_URMmr-PC	PGA	PGA	LQF_URMmr-PC	GD

3. At the section <u>Profile assignment</u>, users can define how seismic load indicator (PGA, Sa, Sd) resulted from ground amplification profiles and liquefaction severity indicators (PGA, Sa, LSN, GD) resulted from liquefaction profiles will be assigned to the assets (buildings, infrastructures) for the computation of seismic demand and liquefaction demand, the associated damage and loss ratio. Users will have to choose one of the following options:

<u>Closest Distance to Point Without Interpolation</u>: the assigned value of seismic load indicator and liquefaction severity indicator are directly resulted from the closest ground amplification profile and liquefaction profile at the location of a given asset or the closed to it.

<u>Closest Distance to Point After Interpolation</u>: the assigned value of seismic load indicator and liquefaction severity indicator are directly resulted from interpolation, at the location of a given asset.

Pat	th to fragility fi	les					Browse
Vul	nerability Mode	el Ground Si	haking and Liquefaction 🔹	Conventional 🔻			
	Typology	Period T1	Ground Shaking Fragility	Fragility IM_GS	Capacity	Liquefaction Fragility	Fragility IM_Lq
1	RCFIr-LC	0.16	GSF_RCFIr-LC	Sd	GSCap_RCFIr-LC	LQF_RCFIr-LC	GD
2	RCFmr-LC	0.32	GSF_RCFmr-LC	Sd	GSCap_RCFmr-LC	LQF_RCFmr-LC	GD
3	RCFhr-LC	0.46	GSF_RCFhr-LC	Sd	GSCap_RCFhr-LC	LQF_RCFhr-LC	GD
4	URMIr-PC	0.10	GSF_URMIr-PC	PGA	PGA	LQF_URMIr-PC	GD
5	URMmr-PC	0.25	GSF_URMmr-PC	PGA	PGA	LQF_URMmr-PC	GD

2.3.1.1.3 Fragility Models

In the LIQUEFACT software, Liquefaction and Ground Shaking Fragility models are assumed to take the form of a lognormal cumulative distribution function having a median value and logarithmic standard deviation, or dispersion.

$$P[ds|IM] = \Phi \cdot \left[\frac{1}{\beta_{ds}} \cdot ln\left(\frac{IM}{\overline{IM}_{ds}}\right)\right]$$

 \overline{IM}_{ds} , is the median value of intensity measure at which the building reaches the threshold of damage state ds; β_{ds} , is the standard deviation of the natural logarithm of intensity measure for damage state ds; Φ () is the standard normal cumulative distribution function.

2.3.1.1.3.1 Intensity Measures for Fragility Models

LIQUEFACT software provides options in terms of intensity measures that can be used for usersupplied liquefaction and ground shaking fragility models.

2.3.1.1.3.1.1 Intensity Measures for Liquefaction Fragility Models

For Liquefaction Fragility Model, the following intensity measures can be used as engineering demand parameters for both, *Conventional* and *ESP-based* damage and loss analysis:

- Spectral Acceleration (Sa), where *Median* values must be provided in [g] unit.
- Peak Ground Acceleration (PGA), where Median values must be provided in [g] unit.
- Ground Deformation Settlement (GD), where *Median* values must be provided in [g] unit.
- Liquefaction Severity Number (LSN).

Vul	nerability Data	Input E	conomic Business Activity	Data Input					
Pat	ath to fragility files IQUEFACT-INPUT-DATA/40 VulnerabilityDataInput/FragCapacityCurves Browse								
/ul	ulnerability Model Liquefaction								
	Typology	Period T1	Liquefaction Fragility	Fragility IM_Lq					
1	RCFIr-LC	0.16	LQF_RCFIr-LC	GD					
2	RCFmr-LC	0.32	LQF_RCFmr-LC	GD 🗸					
3	RCFhr-LC	0.46	LQF_RCFhr-LC	LSN					
4	URMIr-PC	0.10	LQF_URMIr-PC	Sa PGA					
5	URMmr-PC	0.25	LQF_URMmr-PC	GD					
	Add row	Delete rows	s Show table V	iew Import Export					

2.3.1.1.3.1.2 Intensity Measures for Ground Shaking Fragility Models

For Ground Shaking Fragility Model, the following intensity measures can be used as engineering demand parameters for damage and loss analysis:

• Peak Ground Acceleration (PGA), where *Median* values must be provided in [g] unit.

- Spectral Acceleration (Sa), where *Median* values must be provided in [g] unit.
- Spectral Displacement (Sd), where *Median* values must be provided in meter unit [m].

Vu	nerability Data	a Input E	conomic Business Activity Dat	a Input			
Pat	th to fragility fi	iles					Browse
Vul	nerability Mod	el Ground S	haking and Liquefaction 🔹	Conventional 🔻			
	Typology	Period T1	Ground Shaking Fragility	Fragility IM_GS	Capacity	Liquefaction Fragility	Fragility IM_Lo
1	RCFIr-LC	0.16	GSF_RCFIr-LC	Sd	GSCap_RCFIr-LC	LQF_RCFIr-LC	GD
2	RCFmr-LC	0.32	GSF_RCFmr-LC	Sd	GSCap_RCFmr-LC	LQF_RCFmr-LC	GD
3	RCFhr-LC	0.46	GSF_RCFhr-LC	Sd	GSCap_RCFhr-LC	LQF_RCFhr-LC	GD
4	URMIr-PC	0.10	GSF_URMIr-PC	PGA	PGA	LQF_URMIr-PC	GD
5	URMmr-PC	0.25	GSF_URMmr-PC	PGA 🗸	PGA	LQF_URMmr-PC	GD
				PGA Sa Sd			
Pro	Add row	Delete rows	Show table View.	Import			Export

2.3.1.1.3.2 Liquefaction Fragility Models

The type and format of user-supplied liquefaction models to be imported depend on the type of loss analysis procedure users wish to implement: *Conventional* procedure or *Equivalent Soil Profile (ESP)* based procedure.

2.3.1.1.3.2.1 Liquefaction Fragility Models for ESP-based method

In the Equivalent Soil Profile (ESP)-based procedure, a given typology (building or infrastructure) is represented by 22 ESP classes that are developed based on the thickness level of liquefiable layer, the depth to the liquefiable layer, the level of strength of the liquefiable layer.

ESP classes	Soil Resistance	Thickness of Liquefiable Layer	Thickness of Crust Layer
WLS	Weak	Large	Shallow
WLM	Weak	Large	Mid
WLD	Weak	Large	Deep
WMS	Weak	Midsize	Shallow
WMM	Weak	Midsize	Mid
WMD	Weak	Midsize	Deep
WTS	Weak	Thin	Shallow
WTM	Weak	Thin	Mid
WTD	Weak	Thin	Deep

Concept of the 22 classes of Equivalent Soil Profile (ESP)

MLS	Midium	Large	Shallow
MLM	Midium	Large	Mid
MLD	Midium	Large	Deep
MMS	Midium	Midsize	Shallow
MMM	Midium	Midsize	Mid
MMD	Midium	Midsize	Deep
MTS	Midium	Thin	Shallow
MTM	Midium	Thin	Mid
MTD	Midium	Thin	Deep
SLX	Strong	Large	
SMX	Strong	Midsize	
STX	Strong	Thin	
RXX	Resist		

ESP-based Liquefaction Fragility model for a given typology is a combination of fragility functions representing: *Intersotrey Drift of the Superstructure, Residual, Collapse, Foundation Titling*. The ESP-based liquefaction fragility functions must be created as separate files in format of tab-separated CSV.

1. IntersotryDrift Liquefaction Fragility:

To be defined for 22 ESP classes, and containing the followings:

- Code-name (Typology) as defined in the List of Liquefaction Fragility files.
- Median value of intensity measure at which the typology reaches a given threshold of damage state. The median value can be in terms of *PGA* in g unit, *Sa* in g unit, *Differential Settlement (GD)* in meter unit, or in LSN.
- Standard Deviation of the natural logarithm of intensity measure for a given damage state.

Regarding the definition of damage thresholds, the software considers three *Damage Limit States* for the superstructure Interstory Drift liquefaction fragility. The following definition is recommended: <u>Structural DS1</u> for limit of 0.005% ($\theta_{ss,0.005}$), <u>Structural DS2</u> for limit of 0.01% ($\theta_{ss,0.01}$), and <u>Structural DS3</u> for limit of 0.02% ($\theta_{ss,0.02}$).

Example of user-supplied <u>IntersotryDrift</u> Liquefaction Fragility functions for **MLD** class (one of the 22 classes) in terms of Spectral Acceleration Sa. Each damage limit state is represented by a Median value (in g unit) and Standard Deviation value. (MUST be imported as tab-separated CSV file).

LQF_RCFIr-LC_ml	d.csv - Notepad					- 0	×
File Edit Format	View Help						
#Typology RCFlr-LC	0ss_0.005 899514.8497	STD_ss0.005 8.140971486	θss_0.01 1599514.85	STD_ss0.01 7.140971486	055_0.02 3099514.85	STD_ss0.02 6.140971486	^
							\sim
<							>
				Ln 1, Col 1	100% Windows (CRLF)	UTF-8	

2. <u>Residual</u> Liquefaction Fragility:

To be defined for 22 ESP classes, and containing the followings:

- Code-name (Typology) as defined in the List of Liquefaction Fragility files.
- Median value of intensity measure at which the typology reaches a given threshold of damage state. The median value can be in terms of *PGA* in g unit, *Sa* in g unit, *Differential Settlement (GD)* in meter unit, or in LSN.
- Standard Deviation of the natural logarithm of intensity measure for a given damage state.

Regarding the definition of damage thresholds, the software considers one *Damage Limit State*: <u>*Residual*</u> *Interstory Drift*, which represents large residual interstory drift that exceeded the repairable limit of 0.005% (Sullivan et al. 2012).

Example of user-supplied <u>Residual</u> Liquefaction Fragility functions for **MLD** class (one of the 22 classes) in terms of Spectral Acceleration Sa. The damage limit state is represented by a Median value (in g unit) and Standard Deviation value. (MUST be imported as tab-separated CSV file).

LQF_RCFIr-LC_mld.csv - Notepad - X								
File Edit Format View Help								
#Typology RCFlr-LC	Residual 15016672989	STD_residual 10.17260963				^		
						\sim		
<						>		
	Ln 1, Col 1	1 1005	6 Windows (CRLF)	UTF-8	8 with BON	M		

3. <u>Collapse</u> Liquefaction Fragility:

To be defined for 22 ESP classes, and containing the followings:

- Code-name (Typology) as defined in the List of Liquefaction Fragility files.
- Median value of intensity measure at which the typology reaches a given threshold of damage state. The median value can be in terms of *PGA* in g unit, *Sa* in g unit, *Differential Settlement (GD)* in meter unit, or in LSN.
- Standard Deviation of the natural logarithm of intensity measure for a given damage state.

Regarding the definition of damage thresholds, the software considers one *Damage Limit State* which is <u>*Collapse*</u>.

Example of user-supplied <u>Collapse</u> Liquefaction Fragility functions for **MLD** class (one of the 22 classes) in terms of Spectral Acceleration Sa. The damage limit state is represented by a Median value (in g unit) and Standard Deviation value. (MUST be imported as tab-separated CSV file).

LQF_RCFIr-LC_ml	ld.csv - Notepad		- 🗆 ×	\langle
File Edit Format	View Help			
#Typology RCFlr-LC	Collapse 15016672989	STD_collapse 11.17260963		^
				\sim
<			>	
	Ln 1, Col 1	100% Windows (CRL	.F) UTF-8 with BOM	.::

grant agreement No. 700748

unde

4. *Foundation Titling* Liquefaction Fragility:

To be defined for 22 ESP classes, and containing the followings:

- Code-name (Typology) as defined in the List of Liquefaction Fragility files.
- Median value of intensity measure at which the typology reaches a given threshold of damage • state. The median value can be in terms of PGA in g unit, Sa in g unit, Differential Settlement (GD) in meter unit, or in LSN.
- Standard Deviation of the natural logarithm of intensity measure for a given damage state.

Regarding the definition of damage thresholds, the software considers two Damage Limit States for the foundation performance response under liquefaction hazard. The following definition is recommended: Limit for repair of foundation, and Limit for failure of foundation.

Example of user-supplied *Foundation Titling* Liquefaction Fragility functions for **MLD** class (one of the 22 classes) in terms of Spectral Acceleration Sa. Each damage limit state is represented by a Median value (in g unit) and Standard Deviation value. (MUST be imported as tab-separated CSV file).

Below are examples of InterstoreyDrift liquefaction fragility curves, Foundation Titling liquefaction fragility curves, Residual liquefaction fragility curves, and Collapse liquefaction fragility curves, espectively, generated for the 22 ESP classes.

2.3.1.1.3.2.2 Liquefaction Fragility Models for Conventional method

In the conventional procedure, a given typology (building or infrastructure) is represented by a single liquefaction fragility model which is developed as result of a combined structural system- soil profile.

Liquefaction fragility models for each typology must be created as separate files, in format of tabseparated CSV file containing:

- Code-name (Typology) as defined in the List of Liquefaction Fragility files.
- Median value of intensity measure at which the typology reaches a given threshold of damage state. The median value can be in terms of *PGA* in g unit, *Sa* in g unit, *Differential Settlement (GD)* in meter unit, or in LSN.
- Standard Deviation of the natural logarithm of intensity measure for a given damage state.

Regarding the definition of damage thresholds, options are providing regarding the *Number of Damage Limit States* that can be used in for user-supplied *Liquefaction Fragility* models. The software incorporates the following definitions for the fragility models:

- <u>Four Damage Limit States</u>: Slight Damage, Moderate Damage, Extensive Damage and Complete Damage
- <u>Three Damage Limit States</u>: Damage Limitation, Significant Damage, and Near Collapse.
- <u>Two Damage Limit States</u>: Minor Damage, and Complete Damage
- One Damage Limit State: Collapse

Example user-supplied Liquefaction Fragility model (MUST be imported as tab-separated CSV file) in terms of *Differential Settlement (GD)* and four damage limit states: *Slight Damage, Moderate Damage, Extensive Damage* and *Complete Damage*. Each damage limit state is represented by a *Median* value (here are in meter unit) and *Standard Deviation* value.

LQF_RCFmr-LC.c	csv - Notepad							- 🗆	×
File Edit Format	View Help								
<pre># Liquefaction # Reference: # Typology: # Intensity Mea # Number of Dam # #</pre>	Fragility Functi sure: nage Limit States	ons Fotopou Reinfor Differe :4	lou et al (2018) ced concrete fra ntial Settlement	. Vulner mes syst : (m)	ability assessme em. Mid-rise. Lo	nt of lo w-code	ow-code reinfor	ced concr	ete
#Typology RCFmr-LC	SlightDamage 0.027	STD_SD 0.5	ModerateDamage 0.098	STD_MD 0.5	ExtensiveDamage 0.176	STD_ED 0.5	CompleteDamag 0.305	≥ STD_CD 0.5	
<					Ln 9, Col 50	100%	Windows (CRLF)	ANSI	`
RCFmr-LC - Liqu	uefaction Fragility Func 0.2 0.4 GD (c Slight – Moderate –	tions 0.6 Cm) Extensive	×						

Example user-supplied Liquefaction Fragility model (MUST be imported as tab-separated CSV file) in terms of *Differential Settlement (GD)* and three damage limit states: *Damage Limitation, Significant Damage*, and *Near Collapse*. Each damage limit state is represented by a *Median* value (here are in meter unit) and *Standard Deviation* value.

/ *LQF_RCFmr-L	.C_3DLS.csv - Notepad						×
File Edit Forma	t View Help						
# Liquefactio	on Fragility Functio	ns					~
<pre># Typology:</pre>		Reinforced concrete	frames system. Mid-rise	e. Low-code			
# Intensity M	leasure:	Differential Settle	ment (m)				
# Number of D	amage Limit States:	3					
#							
# #Typology	DamageLimitation	STD DL	SignificantDamage	STD SD	NearCollapse	STD	NC
RCFmr-LC	0.027	0.5	0.137	0.5	0.305	0.5	
<							>
			Ln 8, Co	36 100%	Windows (CRLF) AN	4SI	

Example user-supplied Liquefaction Fragility model (MUST be imported as tab-separated CSV file) in terms of *Differential Settlement (GD)* and two damage limit states: *Minor Damage*, and *Complete Damage*. Each damage limit state is represented by a *Median* value (here are in meter unit) and *Standard Deviation* value.

Example user-supplied Liquefaction Fragility model (MUST be imported as tab-separated CSV file) in terms of *Differential Settlement (GD)* and one damage limit state: *Collapse*. The damage limit state is represented by a *Median* value (here are in meter unit) and *Standard Deviation* value.

2.3.1.1.3.3 Ground Shaking Fragility Models

For ground shaking, a given typology (building or infrastructure) is represented by a single fragility model which is developed as result of structural performance analysis under ground shaking intensities.

Ground Shaking fragility models for each typology must be created as separate files, in format of tabseparated CSV file containing:

- Code-name (Typology) as defined in the List of Ground Shaking Fragility files.
- Median value of intensity measure at which the typology reaches a given threshold of damage state. The median value can be in terms of *PGA* in g unit, *Sa* in g unit, or *Sd* in meter unit.
- Standard Deviation of the natural logarithm of intensity measure for a given damage state.

Regarding the definition of damage thresholds, options are providing regarding the *Number of Damage Limit States* that can be used in for user-supplied *Ground Shaking Fragility* models. The software incorporates the following definitions for the fragility models:

- <u>Four Damage Limit States</u>: Slight Damage, Moderate Damage, Extensive Damage and Complete Damage
- <u>Three Damage Limit States</u>: Damage Limitation, Significant Damage, and Near Collapse.
- <u>Two Damage Limit States</u>: Minor Damage, and Complete Damage
- <u>One Damage Limit State</u>: Collapse

Example user-supplied Ground Shaking Fragility model (MUST be imported as tab-separated CSV file) in terms of *Peak Ground Acceleration (PGA)* and four damage limit states: *Slight Damage, Moderate Damage, Extensive Damage* and *Complete Damage*. Each damage limit state is represented by a *Median* value (here are in g unit) and *Standard Deviation* value.

PGA – Slight – Moderate – Extensive – Complete	-	0.8	0.6	0.4	0.2	0
		e – Complete	- Extensive	Moderate	– Slight –	
Close		Close				

Example user-supplied Ground Shaking Fragility model (MUST be imported as tab-separated CSV file) in terms of *Peak Ground Acceleration (PGA)* and three damage limit states: *Damage Limitation*,

0

Significant Damage, and *Near Collapse*. Each damage limit state is represented by a *Median* value (here are in meter unit) and *Standard Deviation* value.

Example user-supplied Ground Shaking Fragility model (MUST be imported as tab-separated CSV file) in terms of *Peak Ground Acceleration (PGA)* and two damage limit states: *Minor Damage*, and *Complete Damage*. Each damage limit state is represented by a *Median* value (here are in g unit) and *Standard Deviation* value.

SSF_RCFmr-LC_	2DLS.csv - Notepad					_		×
File Edit Format	View Help							
<pre># Ground Shakir # Typology: # Intensity Mea # Number of Dan # #</pre>	ng Fragility Fun asure: nage Limit State	nctions Reinforced Peak Ground es:2	concrete frames system d Acceleration (PGA), [. Mid-r g]	ise. Low-code			^
#Typology RCFmr-LC	MinorDamage 0.085	STD_MD 0.290	CompleteDamage 0.250		STD_CD 1.010			~
<								>
			Ln 8, Col 32	100%	Windows (CRLF)	UTF-	В	

Example user-supplied Ground Shaking Fragility model (MUST be imported as tab-separated CSV file) in terms of *Peak Ground Acceleration (PGA)* and one damage limit state: *Collapse*. The damage limit state is represented by a *Median* value (here are in g unit) and *Standard Deviation* value.

from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748

2.3.1.1.3.3.1 Capacity Curves

In case of user-supplied Ground Shaking Fragility models are function of Spectral Displacement (Sd), then users are required to also import <u>Capacity Curve Model</u> file associated to each Ground Shaking Fragility Model representing a given typology.

Capacity Curve model for each typology must be created and imported as separate unformatted TXT file, containing the following information:

- 1st column represents Spectral Displacement S_d in [m];
- 2^{nd} column represents Spectral Acceleration S_a in [g]Period(T1).

Example of *Capacity Curve model* to be imported as unformatted TXT file

2.3.1.1.4 Path to Fragility Models Folders

For user-supplied fragility models, a specific path must be defined to import the models for the computation of damage and loss.

2.3.1.1.4.1 Path to ESP-based Liquefaction Fragility Models Folders

 Click the <u>Browse</u> button to define the path to the <u>FragCapacityCurves</u> folder where all sub-folders of Liquefaction Fragility files must be stored and organized depending on type of loss analysis (i.e. ESP-based analysis) and type of Intensity Measure of the Liquefaction Fragility Models.

/ul	nerability Data	a Input E	conomic Business Activity	Data Input	
at	th to fragility f	iles D:/Frag	CapacityCurves		Browse
/ul	nerability Mod	el Liquefact	ion	▼ ESP-Based	•
	Typology	Period T1	Liquefaction Fragility	Fragility IM_Lq	
1	RCFIr-LC	0.16	LQF_RCFIr-LC	Sa	
2	RCFmr-LC	0.32	LQF_RCFmr-LC	Sa	
3	RCFhr-LC	0.46	LQF_RCFhr-LC	Sa	
4	URMIr-PC	0.10	LQF_URMIr-PC	Sa	
5	URMmr-PC	0.25	LQF_URMmr-PC	Sa	
	Add row	Delete row	s Show table	/iew Imp	Export

NOTE that the folder name "*FragCapacityCurves*" cannot be changed.

- 2. The fragility models must be created as separate files in format of tab-separated CSV files. Starting from *FragCapacityCurves* folder and depending on type of intensity measure used (Sa, PGA, GD, or LSN), the software automatically takes the following pre-defined paths to import the ESP-based liquefaction fragility:
 - 1.1. ESP-based fragility functions in terms of <u>Spectral Acceleration (Sa)</u>.

NOTE: folders with names in *Italic* style must be named as they are.

2.1.1. *Interstorey Drift* liquefaction fragility functions for the 22 classes are automatically imported from the following path:

FragCapacityCurves\Liquefaction\ESP\Sa\InterstoryDrift\LQF_RCFIr-LC

2.1.2. Residual liquefaction fragility functions for the 22 classes are automatically imported from the following path:

FragCapacityCurves\Liquefaction\ESP\Sa\Residual\LQF_RCFIr-LC

📙 🛃 📕 🖛 LQF_RC	Flr-LC					- 🗆	\times
File Home Shar	e View						^ 🕐
Pin to Quick Copy Paste	X Cut ™ Copy path ₽ Paste shortcut	Move Copy to * to *	Delete Rename	New folder	Properties	Select all Select none Invert selection	
Clipboar	d	Org	anize	New	Open	Select	
← → × ↑ <mark> </mark> « F	ragCapacityCurves	> Liquefaction >	ESP > Sa > Re	sidual > LQF_	RCFIr-LC	✓ Ö Search LQ	<i>р</i>
LQF_RCFIr-LC_mld	LQF_RCFIr-LC	_smx					
LQF_RCFIr-LC_mlm	LOF_RCFIr-LC	stx					
LQF_RCFIr-LC_mls	LQF_RCFIr-LC	wld					
LQF RCFIr-LC mmd	LQF RCFIr-LC	wlm					
LQF RCFIr-LC mmm	LQF RCFIr-LC	wls					
LQF RCFIr-LC mms	LQF RCFIr-LC	wmd					
LQF RCFIr-LC mtd	LQF RCFIr-LC	wmm					
LQF RCFIr-LC mtm	LQF RCFIr-LC	- wms					
LOF RCFIr-LC mts	LQF RCFIr-LC	wtd					
LQF_RCFIr-LC_rxx	LQF_RCFIr-LC	wtm					
LQF_RCFIr-LC_slx	LQF_RCFIr-LC	_wts					
22 items							::: 🛌

2.1.3. Collapse liquefaction fragility functions for the 22 classes are automatically imported from the following path:

FragCapacityCurves\Liquefaction\ESP\Sa\Collapse\LQF_RCFIr-LC

22 items

2.1.4. *Foundation Titling* liquefaction fragility functions for the 22 classes are automatically imported from the following path:

FragCapacityCurves\Liquefaction\ESP\Sa\Foundation\LQF_RCFIr-LC

I I - I LQF_RCFIr-LC	2	_	
File Home Share	View		^ ()
Pin to Quick Copy Paste 2 access Clipboard	Cut Copy path Paste shortcut Organize Cut Copy to * Copy to * Copy To * Copy To * Copy Copy To * Copy Copy To * Copy To * Cop	Select all Select no Invert sel	ne lection
← → × ↑ 📴 « FragCa	apacityCurves > Liquefaction > ESP > Sa > Foundation > LQF_RCFIr-LC	v Ĉ Sea	rch LQ 🔎
LQF_RCFIr-LC_mId LQF_RCFIr-LC_mIn LQF_RCFIr-LC_mIn LQF_RCFIr-LC_mmn LQF_RCFIR-LC_mmn LQF_RCFIR-LC]LQF_RCFIr-LC_smx]LQF_RCFIr-LC_skt]LQF_RCFIr-LC_wld]LQF_RCFIr-LC_wls]LQF_RCFIr-LC_wmd]LQF_RCFIr-LC_wms]LQF_RCFIr-LC_wms]LQF_RCFIr-LC_wtd]LQF_RCFIr-LC_wtm]LQF_RCFIr-LC_wts		
22 items			

2.2. ESP-based fragility functions in terms of Peak Ground Acceleration (PGA)

NOTE: folders with names in Italic style must be named as they are

2.2.1. *Interstorey Drift* liquefaction fragility functions for the 22 classes are automatically imported from the following path:

FragCapacityCurves\Liquefaction\ESP\PGA\InterstoryDrift\LQF_RCFIr-LC

- 2.2.2. *Residual* liquefaction fragility functions for the 22 classes are automatically imported from the following path: *FragCapacityCurves\Liquefaction\ESP\PGA\Residual*\LQF_RCFIr-LC
- 2.2.3. *Collapse* liquefaction fragility functions for the 22 classes are automatically imported from the following path:

FragCapacityCurves\Liquefaction\ESP\PGA\Collapse\LQF_RCFIr-LC

- 2.2.4. Foundation Titling liquefaction fragility functions for the 22 classes are automatically imported from the following path: FragCapacityCurves\Liquefaction\ESP\PGA\Foundation\LQF_RCFIr-LC
- 2.3. ESP-based fragility functions in terms of <u>Differential Settlement (GD)</u>

NOTE: folders with names in Italic style must be named as they are

- 2.3.1. Interstorey Drift liquefaction fragility functions for the 22 classes are automatically imported from the following path: FragCapacityCurves\Liquefaction\ESP\GD\InterstoryDrift\LQF_RCFIr-LC
- 2.3.2. *Residual* liquefaction fragility functions for the 22 classes are automatically imported from the following path: *FragCapacityCurves\Liquefaction\ESP\GD\Residual*\LQF RCFIr-LC
- 2.3.3. Collapse liquefaction fragility functions for the 22 classes are automatically imported from the following path: FragCapacityCurves\Liquefaction\ESP\GD\Collapse\LQF_RCFIr-LC
- 2.3.4. Foundation Titling liquefaction fragility functions for the 22 classes are automatically imported from the following path: FragCapacityCurves\Liquefaction\ESP\GD\Foundation\LQF_RCFIr-LC
- 2.4. ESP-based fragility functions in terms of Liquefaction Severity Number (LSN)

NOTE: folders with names in Italic style must be named as they are

- 2.4.1. Interstorey Drift liquefaction fragility functions for the 22 classes are automatically imported from the following path: FragCapacityCurves\Liquefaction\ESP\LSN\InterstoryDrift\LQF_RCFIr-LC
- 2.4.2. *Residual* liquefaction fragility functions for the 22 classes are automatically imported from the following path:

 $\label{eq:ragCapacityCurves\Liquefaction\ESP\LSN\Residual\LQF_RCFlr-LC$

2.4.3. *Collapse* liquefaction fragility functions for the 22 classes are automatically imported from the following path:

2.4.4. *Foundation Titling* liquefaction fragility functions for the 22 classes are automatically imported from the following path:

 $\label{eq:starge} FragCapacityCurves \liquefaction \end{target} ESP \label{eq:starget} SP \label{eq:starget} SP \end{target} SP \end{target}$

/ul	nerability Data	Input E	conomic Business Activity	Data Input		
at	h to fragility fi	les D:/Frag	CapacityCurves			Browse
/ulı	nerability Mode	el Liquefacti	on	 ESP-Based 	•	
	Typology	Period T1	Liquefaction Fragility	Fragility IM_Lq		
1	RCFIr-LC	0.16	LQF_RCFIr-LC	Sa		
2	RCFmr-LC	0.32	LQF_RCFmr-LC	Sa		
3	RCFhr-LC	0.46	LQF_RCFhr-LC	Sa		
4	URMIr-PC	0.10	LQF_URMIr-PC	Sa		
5	URMmr-PC	0.25	LQF_URMmr-PC	Sa		

3. Once the ESP-based liquefaction fragility functions are stored in the pre-defined paths as described above, detailed information on each fragility model can be viewed from this table. Manually select the fragility model from the list of the model, click on the <u>View</u> button to view the plot of fragility curves, and the <u>Show</u> table button to display the table with the fragility curves parameters.

Viewing ESP-based liquefaction fragility models

2.3.1.1.4.2 Path to Conventional-based Liquefaction Fragility Models Folders

 Click the <u>Browse</u> button to define the path to the <u>FragCapacityCurves</u> folder where all sub-folders of *Liquefaction Fragility* files must be stored and organized depending on *type of loss analysis* (i.e. conventional-based analysis) and type of *Intensity Measure* of the *Liquefaction Fragility Models*.

Path to fragility files D:/FragCapacityCurves Browse Vulnerability Model Liquefaction Conventional Typology Period T1 Liquefaction Fragility Fragility IM_Lq 1 RCFIr-LC 0.16 LQF_RCFIr-LC GD 2 RCFmr-LC 0.32 LQF_RCFIrr-LC GD 3 RCFhr-LC 0.46 LQF_RCFhr-LC GD 4 URMIr-PC 0.10 LQF_URMIr-PC GD 5 URMmr-PC 0.25 LQF_URMmr-PC GD				conomic Business Activity	Data Input		
Vulnerability Model Liquefaction Conventional 1 Typology Period T1 Liquefaction Fragility Fragility IM_Lq 1 RCFIr-LC 0.16 LQF_RCFIr-LC GD 2 RCFmr-LC 0.32 LQF_RCFmr-LC GD 3 RCFhr-LC 0.46 LQF_RCFhr-LC GD 4 URMIr-PC 0.10 LQF_URMIr-PC GD 5 URMmr-PC 0.25 LQF_URMmr-PC GD	Pat	h to fragility fi	iles D:/Frag	CapacityCurves			Browse
TypologyPeriod TILiquefaction FragilityFragility IM_Lq1RCFIr-LC0.16LQF_RCFIr-LCGD2RCFmr-LC0.32LQF_RCFmr-LCGD3RCFhr-LC0.46LQF_RCFhr-LCGD4URMIr-PC0.10LQF_URMIr-PCGD5URMmr-PC0.25LQF_URMmr-PCGD	Vuli	nerability Mod	el Liquefacti	ion	 Conventional 	•	
RCFIr-LC0.16LQF_RCFIr-LCGDRCFmr-LC0.32LQF_RCFmr-LCGDRCFhr-LC0.46LQF_RCFhr-LCGDURMIr-PC0.10LQF_URMIr-PCGDURMmr-PC0.25LQF_URMmr-PCGD		Туроїоду	Period T1	Liquefaction Fragility	Fragility IM_Lq		
2RCFmr-LC0.32LQF_RCFmr-LCGD3RCFhr-LC0.46LQF_RCFhr-LCGD4URMIr-PC0.10LQF_URMIr-PCGD5URMmr-PC0.25LQF_URMmr-PCGD	1	RCFIr-LC	0.16	LQF_RCFIr-LC	GD		
3 RCFhr-LC 0.46 LQF_RCFhr-LC GD 4 URMIr-PC 0.10 LQF_URMIr-PC GD 5 URMmr-PC 0.25 LQF_URMmr-PC GD	2	RCFmr-LC	0.32	LQF_RCFmr-LC	GD		
4 URMIr-PC 0.10 LQF_URMIr-PC GD 5 URMmr-PC 0.25 LQF_URMmr-PC GD	3	RCFhr-LC	0.46	LQF_RCFhr-LC	GD		
5 URMmr-PC 0.25 LQF_URMmr-PC GD	4	URMIr-PC	0.10	LQF_URMIr-PC	GD		
	5	URMmr-PC	0.25	LQF_URMmr-PC	GD		
Address Deleterance Characteria Street				Phone Audita			Freed

NOTE that the folder name "*FragCapacityCurves*" cannot be changed.

2. The fragility models must be created as separate files in format of tab-separated CSV files. Starting from *FragCapacityCurves* folder and depending on type of intensity measure used (Sa, PGA, GD, or LSN), the software automatically takes the following pre-defined paths to import the Conventional-based liquefaction fragility functions:

NOTE: folders with names in *Italic* style must be named as they are.

1.2. Conventional-based fragility functions in terms of Spectral Acceleration (Sa).

Sa-based Conventional liquefaction fragility functions are automatically imported from the following path:

FragCapacityCurves\Liquefaction\Conv\Sa

2.1. Conventional-based fragility functions in terms of Peak Ground Acceleration (PGA)

PGA-based Conventional liquefaction fragility functions are automatically imported from the following path:

FragCapacityCurves\Liquefaction\Conv\PGA

2.2. Conventional-based fragility functions in terms of Differential Settlement (GD)

GD-based Conventional liquefaction fragility functions are automatically imported from the following path:

FragCapacityCurves\Liquefaction\Conv\GD

2.3. Conventional-based fragility functions in terms of Liquefaction Severity Number (LSN)

LSN-based Conventional liquefaction fragility functions are automatically imported from the following path:

FragCapacityCurves\Liquefaction\Conv\LSN

1	Little Date					
u	nerability Data	E INPUT E	conomic Business Activity	Data Input		
at	h to fragility fi	les D:/Frag	CapacityCurves			Browse
ul	nerability Mode	el Liquefacti	ion	 Conventional 	-	
	Typology	Period T1	Liquefaction Fragility	Fragility IM_Lq		
1	RCFIr-LC	0.16	LQF_RCFIr-LC	GD		
2	RCFmr-LC	0.32	LQF_RCFmr-LC_3DLS	GD		
3	RCFhr-LC	0.46	LQF_RCFhr-LC	GD		
4	URMIr-PC	0.10	LQF_URMIr-PC	GD		
5	URMmr-PC	0.25	LQF_URMmr-PC	GD		
		Delete rows	s Show table V	iew Imp	ort	Export

3. Once the Conventional-based liquefaction fragility functions are stored in the pre-defined paths as described above, detailed information on each fragility model can be viewed from this table. Manually select the fragility model from the list of the model, click on the <u>View</u> button to view the plot of fragility curves, and the <u>Show</u> table button to display the table with the fragility curves parameters.

Viewing Conventional-based liquefaction fragility models

0	RCFmr-LC - Li	quefaction Fragil	lity					\times
	GD, Slight	beta Slight	GD, Moderate	beta Moderate	GD, Extensive	beta Extensive	GD, Complete	beta Complete
	0.027	0.5	0.098	0.5	0.176	0.5	0.305	0.5
<								>
								Close

2.3.1.1.4.3 Path to Ground Shaking Fragility Models Folders

 Ground Shaking Fragility models are used only when Ground Shaking and Liquefaction Analysis is to be implemented by user. Hence, when clicking the <u>Browse</u> button to define the path to the <u>FragCapacityCurves</u> folder where all sub-folders of Liquefaction Fragility files to be stored, this automatically also applies for Ground Shaking Fragility files.

hule	oorability Data	Toput E	conomic Rusinoss Astivity Dat	Toout			
Cill	icrobility Dott		conomic business Activity bat	a mpor			
at	h to fragility fi	les D:/Frag	CapacityCurves				Browse
ulr	nerability Mode	el Ground S	haking and Liquefaction 🛛 🔻	Conventional 💌]		
	Typology	Period T1	Ground Shaking Fragility	Fragility IM_GS	Capacity	Liquefaction Fragility	Fragility IM_Lq
1	RCFIr-LC	0.16	GSF_RCFIr-LC	Sd	GSCap_RCFIr-LC	LQF_RCFIr-LC	GD
2	RCFmr-LC	0.32	GSF_RCFmr-LC	Sd	GSCap_RCFmr-LC	LQF_RCFmr-LC	GD
3	RCFhr-LC	0.46	GSF_RCFhr-LC	Sd	GSCap_RCFhr-LC	LQF_RCFhr-LC	GD
4	URMIr-PC	0.10	GSF_URMIr-PC	PGA	NA	LQF_URMIr-PC	GD
5	URMmr-PC	0.25	GSF_URMmr-PC	PGA	NA	LQF_URMmr-PC	GD
6	CMIr-PC	0.10	GSF_CMIr-PC	Sa	NA	LQF_URMIr-PC	GD
7	CMmr-PC	0.25	GSF_CMmr-PC	Sa	NA	LQF_URMmr-PC	GD
	Add row	Delete rows	s Show table View.	Import			Export
	Add row	Delete rows	s Show table View.	Import			Export

NOTE that the folder name "FragCapacityCurves" cannot be changed.

The fragility models must be created as separate files in format of tab-separated CSV files. Starting from *FragCapacityCurves* folder and depending on type of intensity measure used (PGA, Sa, or Sd), the software automatically takes the following pre-defined paths to import the Ground Shaking fragility functions:

NOTE: folders with names in *Italic* style must be named as they are.

1.3. Ground shaking fragility functions in terms of Peak Ground Acceleration (PGA).

PGA-based Ground Shaking fragility functions are automatically imported from the following path:

FragCapacityCurves\GroundShaking\PGA

📙 🛃 📕 🖛 P	GA				
File Home	Share	View			~ 🕐
Pin to Quick access	Paste	Move to v X Delete v	New folder	Properties	Select
Clipboar	d	Organize	New	Open	
← → × ↑ ← → × ↑ ← GSF_RCFhr-LC. ← GSF_RCFhr-LC. ← GSF_RCFmr-LC ← GSF_URMir-PC ← GSF_URMmr-P	KragCa	pacityCurves > GroundShakir	ng > PGA	✓ ♂ Search	hPGA 🔎
5 items					B== 📼

2.1. Ground shaking fragility functions in terms of Spectral Acceleration (Sa)

Sa-based Ground Shaking fragility functions are automatically imported from the following path:

FragCapacityCurves\GroundShaking\Sa

2.2. Ground shaking fragility functions in terms of Spectral Displacement (Sd)

When Sd-based ground shaking fragility functions are used, it is also required to import the associated Capacity Curves

Sd-based Ground Shaking fragility functions are automatically imported from the following path:

FragCapacityCurves\GroundShaking\Sd

Pat	h to fragility fi	les D:/Frag	CapacityCurves				Browse
/uli	nerability Mode	el Ground Si	haking and Liquefaction 🔻	Conventional 🔻			
	Typology	Period T1	Ground Shaking Fragility	Fragility IM_GS	Capacity	Liquefaction Fragility	Fragility IM_Lq
1	RCFIr-LC	0.16	GSF_RCFIr-LC	Sd	Cap_RCFIr-LC	LQF_RCFIr-LC	GD
2	RCFmr-LC	0.32	GSF_RCFmr-LC	Sd	Cap_RCFmr-LC	LQF_RCFmr-LC	GD
3	RCFhr-LC	0.46	GSF_RCFhr-LC	Sd	Cap_RCFhr-LC	LQF_RCFhr-LC	GD
4	URMIr-PC	0.10	GSF_URMIr-PC	PGA	NA	LQF_URMIr-PC	GD
5	URMmr-PC	0.25	GSF_URMmr-PC	PGA	NA	LQF_URMmr-PC	GD
6	CMIr-PC	0.10	GSF_CMIr-PC	Sa	NA	LQF_URMIr-PC	GD
7	CMmr-PC	0.25	GSF_CMmr-PC	Sa	NA	LQF_URMmr-PC	GD
	Add row	Delete rows	s Show table View.	Import			Export

3. Once the Ground Shaking fragility functions and Capacity Curves are stored in the pre-defined paths as described above, detailed information on each Fragility model and Capacity Curve can be viewed from this table. Manually select the fragility and capacity model from the list of the model, click on the <u>View</u> button to view the plot of fragility and capacity curves, and the <u>Show</u> table button to display the table with the fragility and capacity curves parameters.

Viewing Ground Shaking fragility and Capacity models

2.3.1.1.5 Built-In Liquefaction Vulnerability Model

0.041

0.22

To use the pre-defined fragility models embedded in the software:

4. Select Liquefaction (Built-In) option

0.12

0.03

<

 Select which method of *Loss Analysis* to be implemented: LIQUEFACT software incorporates two procedures for the computation of physical damage and loss ratio for a given liquefaction demand: <u>Conventional</u> procedure or <u>ESP-based</u> (Equivalent Soil Profile based) method.

0.063

0.32

0.086

0.46

Close

≻

Note that in this case the *Path to fragility files* is disactivated as it is not required

Vulnerability	Data Input	Economic Business	Activity Data	Inout		
,		Economic Boomess	neurity butu	Inpot		
Path to fragi	lity files					Browse
Vulnerability	Model Lique	efaction (Built-In)	-	ESP-Based 🔻	Select	
Typology	Period T1	Liquefaction Fragilit	ty Fragility	Conventional ====================================		
Add row	Delete	rows Show table	. View	Import		Export
		and Distances to Deline 144	ithout Intorno	lation T		

6. By clicking on <u>Select</u> button the table below will be displayed showing all the fragility models available in the Built-In system.

Built-in ESP-based Liquefaction Fragility Models

Example of Built-in fragility models for ESP-based loss analysis method

0	Select ESP-Ba	ased Liquefa	action Vulnerability Mod	lels			>	<
1	Typology RCFIr-LC-01	Period T1 0.16	Liquefaction Fragility LQF_RCFIr-LC-01	Fragility IM_Lq Sa	Region Europe	Class Building	Reinforced concrete frames system	
2	RCFIr-LC-02	0.16	LQF_RCFIr-LC-02	PGA	Europe	Building	Reinforced concrete frames system	1
<							>	
Re	gion All	▼ Class	All 🔻 Measu	re All 🔻				
	Select All	Deselect All				OK	Cancel Help	

Detailed description on each built-in fragility model can be viewed by manually select and double click, the table below will be displayed.

Typology Inf	0	\times
Typology:	RCFlr-LC-01	
Region:	Europe	
Class:	Building	
Intensity Mea	sure: Sa	
Method:	ESP	
Notes		
Reinforced conc Three Interstory convergence or foundation). Int Software Toolbo	'ete frames system (with and without masonry infills). Shallow Foundation. Low-rise. Low-code. 'Limit States (0.005%, 0.01%, 0.02%), Residual interstorey drift (>0.005%), Collapse (non element failure), and Two Tilt Limits of Foundation (Limit for Repair of foundation, Limit for Failure ensity Measure: Spectral Acceleration Sa(T1). [Reference: Meslem et al (2019) Deliverable D6.4, x Development à€" Module for Built-in Liquefaction Vulnerability Models. LIQUEFACT Project].	of
	OK	

Built-in Conventional-based Liquefaction Fragility Models

Example of Built-in fragility models for *Conventional-based* loss analysis method

•	Select Conve	entional Liq	uefaction Vulnerability N	Nodels			×
	Typology	Period T1	Liquefaction Fragility	Fragility IM_Lq	Region	Class	^
1	RCFhr-LC	0.46	LQF_RCFhr-LC	GD	Greece	Building	Reinforced concrete frames. High-rise
2	RCFIr-LC	0.16	LQF_RCFIr-LC	GD	Greece	Building	Reinforced concrete frames. Low-rise.
3	RCFmr-LC	0.32	LQF_RCFmr-LC	GD	Greece	Building	Reinforced concrete frames. Mid-rise.
4	URMIr-PC	0.10	LQF_URMIr-PC	GD	Europe	Building	Unreinforced masonry. Low-rise. Pre-c
5	URMmr-PC	0.25	LQF_URMmr-PC	GD	Europe	Building	Unreinforced masonry. Mid-rise. Pre-c 🗸
<							>
Reg	jion All	 Class 	All Measu	ure All 🔻			
	Select All	Deselect Al	1				OK Cancel Help

Detailed description on each built-in fragility model can be viewed by manually select and double click, the table below will be displayed.

🚯 Typology Inf	io	×
Typology:	RCFmr-LC	
Region:	Greece	
Class:	Building	
Intensity Mea	sure: GD	
Method:	Conventional	
Notes		
Reinforced conc (LS1, LS2, LS3, I Vulnerability ass induced differen	rete frames system (bare frame). Mid-rise (4-storey). Low-code. Four Damage Sta LS4). Intensity Measure: Differential Settlement. [Reference: Fotopoulou et al (20 essment of low-code reinforced concrete frame buildings subjected to liquefaction- tial displacements. Soil Dynamics and Earthquake Engineering 110 (2018) 173-184]	tes 18).
	0	<

The built-in system contains a filter for a quick search and selection of available fragility models in terms of "*Region*", "*Class*" and "*Intensity Measure*".

7. Select manually the fragility models to be used or click on <u>Select All</u> button you wish to select all the models available.

Pat Vul	th to fragility fil nerability Mode	es	on (Built-In)	▼ ESP-Based	▼ Select	Browse
	Туроlоду	Period T1	Liquefaction Fragility	Fragility IM_Lq		_
1	RCFIr-LC-01	0.16	LQF_RCFIr-LC-01	Sa		
2	RCFIr-LC-02	0.16	LQF_RCFIr-LC-02	PGA		

Vol	nerability Data	Toput E	conomic Pusinoss Activity	Data Incut		
v ca	nerability bate		contonnic business Activity	Data Input		
Pat	h to fragility fi	les				Browse
Vul	nerability Mod	el Liquefacti	on <mark>(</mark> Built-In)	 Conventional 	▼ Select	
	Typology	Period T1	Liquefaction Fragility	Fragility IM_Lq		
1	RCFhr-LC	0.46	LQF_RCFhr-LC	GD		
2	RCFIr-LC	0.16	LQF_RCFIr-LC	GD		
3	RCFmr-LC	0.32	LQF_RCFmr-LC	GD		
4	URMIr-PC	0.10	LQF_URMIr-PC	GD		
5	URMmr-PC	0.25	LQF_URMmr-PC	GD		
	Add row	Delete rows	s Show table V	iew Imp	ort	Export

 From this table, detailed description on each built-in fragility model can also be viewed by manually select and double click, the table below will be displayed. In addition, fragility curves can be plotted by clicking on <u>View</u> button.

Viewing built-in *ESP-based* liquefaction fragility models

RCFmr-LC - Liquefaction Fragility Functions \times 1 Damage Probability 700 0.0 7 0 0 0.2 0.4 0.6 0.8 1 GD (cm) - Extensive - Complete Slight Moderate Close

Viewing built-in Conventional-based liquefaction fragility models

Table showing the functions of fragility model displayed by clicking on Show table button.

0	RCFmr-LC - Li	quefaction Fragi	lity					×
	GD, Slight	beta Slight	GD, Moderate	beta Moderate	GD, Extensive	beta Extensive	GD, Complete	beta Complete
	0.027	0.5	0.098	0.5	0.176	0.5	0.305	0.5
<			1		1	1		>
								Close

9. At the section <u>Profile assignment</u>, users can define how liquefaction severity indicators (PGA, Sa, LSN, GD) resulted from liquefaction profiles will be assigned to the assets (buildings, infrastructures) for the computation of liquefaction demand, the associated damage and loss ratio. Users will have to choose one of the following options:

<u>Closest Distance to Point Without Interpolation</u>: the assigned value of liquefaction severity indicator is directly resulted from the closest liquefaction profile at the location of a given asset or the closed to it.

<u>Closest Distance to Point After Interpolation</u>: the assigned value of liquefaction severity indicator is directly resulted from interpolation, at the location of a given asset.

Vul	nerability Data	Input E	conomic Business Activity	Data Input		
	il in Constitut C					0
Pai	in to magnity n	les				browse
Vul	nerability Mod	el Liquefact	ion (Built-In)	 Conventional 	 Select 	
	Typology	Period T1	Liquefaction Fragility	Fragility IM_Lq		
1	RCFhr-LC	0.46	LQF_RCFhr-LC	GD		
2	RCFIr-LC	0.16	LQF_RCFIr-LC	GD		
3	RCFmr-LC	0.32	LQF_RCFmr-LC	GD		
4	URMIr-PC	0.10	LQF_URMIr-PC	GD		
5	URMmr-PC	0.25	LQF_URMmr-PC	GD		
		Delate	Planet Maria			-
	Add row	Delete row	s Show table V	lmpor	·t	Export

2.3.1.2 Economic & Business Activity Data Input

The module for Economic Loss Analysis is activated only when user select "*Physical impact & Economic*" in the *Type of Analysis* Section. In this case, the user is required to import economic and business activity input data, and which can be categorize into two groups: <u>Owner</u> Economic and Business Activity data, and <u>Insurance</u> Economic and Business Activity data.

- <u>Owner</u> Economic and Business Activity data are shown in the module "Economical Model" of the software and used for the computation of Owner Economic Loss in terms of direct loss asset loss (due to physical impact), contents loss and business interruption loss.
- <u>Insurance</u> Economic and Business Activity data are shown in the module: "Policy" (for asset insurance loss computation), "Contents" (for contents insurance loss computation), and "Business Interruption" (for business interruption insurance loss computation)

Data Input	Description	NOTE
Risk Identification	Code identification to be assigned to each individual asset	Mandatory
ECONOMICAL MODEL (for Owner Loss	computation)	

List of the Economic and Business Activity Data input

Monetary Values of Building	If no value is assigned than the building owner loss will not be computed.
Monetary Values of Contents	If no value is assigned than the content owner loss will not be computed
Business Revenue Building	If no value is assigned than the business loss will not be computed
Time Horizon	Mandatory for Cost-Benefit computation if Mitigation Analysis in selected
POLICY (for Building Insurance Loss con	mputation)
Insured Amount (Building)	If no value is assigned than the building insurance loss will not be computed.
Facultative Reinsurance (Building)	If no value is assigned, will not be considered in the computation
Coinsurance (Building)	If no value is assigned, will not be considered in the computation
CEDED Reinsurance (Building)	If no value is assigned, will not be considered in the computation
CONTENTS (for Contents Insurance Los	ss computation)
Insured Amount (Contents)	If no value is assigned than the content insurance loss will not be computed
Facultative Reinsurance (Contents)	If no value is assigned, will not be considered in the computation
Coinsurance (Contents)	If no value is assigned, will not be considered in the computation
CEDED Reinsurance (Contents)	If no value is assigned, will not be considered in the computation
BUSINESS INTERRUPTION (for Business	s Insurance computation)
Insured Amount (Business Interruption)	<i>If no value is assigned than the business interruption insurance loss will not be computed</i>
Facultative Reinsurance (Business Interruption)	If no value is assigned, will not be considered in the computation
Coinsurance (Business Interruption)	If no value is assigned, will not be considered in the computation
CEDED Reinsurance (Business Interruption)	If no value is assigned, will not be considered in the computation

The Economic and Business Activity Data input is imported as tab-separated CSV or unformatted TXT files. Here is an example of CSV/TXT file that can be imported in the LIQUEFACT software.

- III	portuata_econi	micbusines	suatainput.t	xt - Notep	bad													- A
File B	Edit Format	View Help)															
# Ris	k Identifi	cation	Monetar	y Value	es of Bui	lding	Monetary Valu	es of Con	tents	Business Revenu	e Building		Time Horizon	Insured Amount	(Build:	Ing) Facu	ltative	Reinsu ^
8001	282900	56580	282.9	15	5658	0.15	0.977	8 1131.6	0.153840	5	0.3155 2	82.9		0.823197				
8002	326150	65230	326.15	35	6523	0.15	0,977	3 1304.6	0.153840	5	0.388379		326.15	0,823	.97			
8003	653210	653210	653.21	40	65321	0.15	0.977	3 13064.	2 0.153840	6	0.384336		3266.05	0.823	.97			
8004	301680	75420	301.68	42	7542	0.15	0.977	3 1508.4	0.15556	0.37169	2 3	77.1		0.83263				
8005	109240	10924	109.24	23	5462	0.15	0.977	3 1092.4	0.1666	0.36186	5 2	73.1		0.83553				
8006	162900	6516	162.9	20	3258	0.15	0.977	651.6	0.1666	0.32322	5 1	62.9		0.836376				
8007	282900	56580	282.9	15	5658	0.15	0.977	8 1131.6	0.153840	5	0.3155 2	82.9		0.823197				
8008	326150	65230	326.15	35	6523	0.15	0.977	8 1304.6	0.153840	5	0.388379		326.15	0.823	.97			
8009	653210	653210	653.21	40	65321	0.15	0,977	8 13064.	2 0.153840	5	0.384336		3266.05	0.823	.97			
8010	301680	75420	301.68	42	7542	0.15	0.977	3 1508.4	0.15556	0.37169	2 3	77.1		0.83263				
8011	109240	10924	109.24	23	5462	0.15	0.977	8 1092.4	0.1666	0.36186	5 2	73.1		0.83553				
8012	162900	6516	162.9	20	3258	0.15	0.977	651.6	0.1666	0.32322	5 1	62.9		0.836376				
8013	428100	85620	428.1	15	8562	0.15	0.977	8 1712.4	0.1683	0.29675	428.1		0.83852					~
<																		>
														Ln 14, Col 84	100%	Windows (CRLF)	UTF-8	

Import Economic and Business Activity Data input

In the Section <u>Economic Business Activity Data input</u> and by clicking on the module <u>ALL</u> the economic and business data can be imported by clicking on the <u>Import</u> button.

/ulner	ability Data Input	Economic Business A	ctivity Data Input								
ALL	ECONOMICAL MODE	EL POLICY COM	TENTS BUSINES	S INTERRUPTION							
	Risk Identification	Monetary Values of Building	Monetary Values of Contents	Business Revenue Building	Time Horizon	Insured Amount (Building)	Facultative Reinsurance (Building)	Coinsurance (Building)	CEDED Reinsurance (Building)	Insured Amount (Contents)	Faculta (
1	B001	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	
2	B002	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	
3	B003	0.00	0.00	Import ed	onomical data				×	0.00	
4	B004	0.00	0.00	Look in:	D:\LIQUEFA	CT\EconomicBusines	DataInput 🔹 🤇	000	3 🗉 🔳	0.00	
5	B005	0.00	0.00	S My Co	mputer	Name		^		0.00	
6	B006	0.00	0.00	abdel		ImportData_Econ	omicBusinessDataInput.txt			0.00	
7	B007	0.00	0.00							0.00	
8	B008	0.00	0.00							0.00	
9	B009	0.00	0.00							0.00	
10	B010	0.00	0.00		<				>	0.00	
11	B011	0.00	0.00	File name:					Open	0.00	
12	B012	0.00	0.00	Files of type:	CSV (*.csv *.txt)		•	Cancel	0.00	
13	B013	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	

This warning message will show-up, and by clicking on <u>Continue</u> button the economic data will be imported

🚯 War	arning		×
	This will override current economical data columns in e Proceed?	existing p	ortfolio table.
	Cont	tinue	Stop

The Owner Economic Data can be viewed by clicking on the module <u>ECONOMICAL MODEL</u>. Will be used for the computation of owner loss in terms of Asset, Content, and Business Revenue.

Vulner	ability Data Input	Economic Business A	ctivity Data Input		
ALL	ECONOMICAL MOD	EL POLICY COM	NTENTS BUSINES	S INTERRUPTION	
	A Risk Identification	Monetary Values of Building	Monetary Values of Contents	Business Revenue Building	Time Horizon
1	B001	282 900.00	56 580.00	282.90	15
2	B002	326 150.00	65 230.00	326.15	35
3	B003	653 210.00	653 210.00	653.21	40
4	B004	301 680.00	75 420.00	301.68	42
5	B005	109 240.00	10 924.00	109.24	23
6	B006	162 900.00	6 516.00	162.90	20
7	B007	282 900.00	56 580.00	282.90	15
8	B008	326 150.00	65 230.00	326.15	35
9	B009	653 210.00	653 210.00	653.21	40
10	B010	301 680.00	75 420.00	301.68	42
11	B011	109 240.00	10 924.00	109.24	23

The Asset (building/infrastructure) Insurance Data can be viewed by clicking on the module <u>POLICY</u>. Will be used for the computation of *Asset Insurance Loss*.

Vulner	rability Data Input	Economic Business A	ctivity Data Input			
ALL	ECONOMICAL MODE	EL POLICY CO	NTENTS BUSINESS INTER	RUPTION		
	Arisk Identification	Insured Amount (Building)	Facultative Reinsurance (Building)	Coinsurance (Building)	CEDED Reinsurance (Building)	^
1	B001	5 658.00	0.15	0.00	0.98	
2	B002	6 523.00	0.15	0.00	0.98	
3	B003	65 321.00	0.15	0.00	0.98	
4	B004	7 542.00	0.15	0.00	0.98	
5	B005	5 462.00	0.15	0.00	0.98	
6	B006	3 258.00	0.15	0.00	0.98	
7	B007	5 658.00	0.15	0.00	0.98	
8	B008	6 523.00	0.15	0.00	0.98	
9	B009	65 321.00	0.15	0.00	0.98	
10	B010	7 542.00	0.15	0.00	0.98	
11	B011	5 462.00	0.15	0.00	0.98	~

The Contents Insurance Data can be viewed by clicking on the module <u>CONTENTS</u>. Will be used for the computation of *Contents Insurance Loss*.

VUITER	ability Data Input	Economic Business A	ctivity Data Input			
ALL	ECONOMICAL MODE	EL POLICY CO	NTENTS BUSINESS INTER	RUPTION		
	^ Risk Identification	Insured Amount (Contents)	Facultative Reinsurance (Contents)	Coinsurance (Contents)	CEDED Reinsurance (Contents)	1
1	B001	1 131.60	0.15	0.00	0.32	
2	B002	1 304.60	0.15	0.00	0.39	
3	B003	13 064.20	0.15	0.00	0.38	
4	B004	1 508.40	0.16	0.00	0.37	
5	B005	1 092.40	0.17	0.00	0.36	
6	B006	651.60	0.17	0.00	0.32	
7	B007	1 131.60	0.15	0.00	0.32	
8	B008	1 304.60	0.15	0.00	0.39	
9	B009	13 064.20	0.15	0.00	0.38	
10	B010	1 508.40	0.16	0.00	0.37	
L [B011	1 092.40	0.17	0.00	0.36	

The *Business Interruption Insurance Data* can be viewed by clicking on the module <u>BUSINESS</u> <u>INTERRUPTION</u>. Will be used for the computation of *Business Interruption Insurance Loss*.

Vulner	ability Data Input	Economic Business Activity [Data Input			
ALL	ECONOMICAL MODE	EL POLICY CONTENTS	BUSINESS INTERRUPTIC	N		
	^ Risk Identification	Insured Amount (Business Interruption)	Facultative Reinsurance (Business Interruption)	Coinsurance (Business Interruption)	CEDED Reinsurance (Business Interruption)	^
1	B001	282.90	0.00	0.00	0.82	
2	B002	326.15	0.00	0.00	0.82	
3	B003	3 266.05	0.00	0.00	0.82	
4	B004	377.10	0.00	0.00	0.83	
5	B005	273.10	0.00	0.00	0.84	
6	B006	162.90	0.00	0.00	0.84	
7	B007	282.90	0.00	0.00	0.82	
8	B008	326.15	0.00	0.00	0.82	
9	B009	3 266.05	0.00	0.00	0.82	
10	B010	377.10	0.00	0.00	0.83	
11	B011	273.10	0.00	0.00	0.84	~

The imported data can be modified by double click on any cell, and later can also be exported by clicking on the <u>*Export*</u> button from the <u>*ALL*</u> module.

2.3.2 Assets Modelling (STRUCTURE Portfolio Data)

For <u>*Risk Analysis*</u>, user is required to import the assets (buildings/infrastructures) <u>*SRUCTURE*</u> details. Table below illustrates the

Table below illustrates the list of input parameters that define asset STRUCTURE in the Portfolio Data section.

Data Input	Description	NOTE
Risk Identification	Code identification to be assigned to each individual asset	Mandatory
STRUCTURE		
Typology	Typology representing a given structural class	Mandatory
Use	Occupancy type	Nonmandatory
Width	Width of each given asset, in meter unit	Mandatory
Length	Length of each given asset, in meter unit	Mandatory
Height	Height of each given asset, in meter unit	Nonmandatory
Contact Pressure	Contact pressure for each asset, in kPa unit	Mandatory
Stories Above Ground	Number of storeys above ground surface	Mandatory

Stories Below Ground Number of storeys below ground surface

Mandatory

The Portfolio STRUCTURE data is imported as tab-separated CSV or unformatted TXT files. Here is an example of CSV/TXT file for asset *STRUCTURE* that can be imported in the LIQUEFACT software.

// *ImportData_Portfolio_STRU	CTURE.txt - Notepa	ad						- 0	×
File Edit Format View He	lp								
#Risk Identification	Typology	Use	Width[m]	Length[m]	Height[m]	Contact Pressure[kPa] Stories Above Groun	d Stories Below Gro	ound ^
B001	RCF1r-LC	Education	0	0	8.4	10	3	0	
B002	RCF1r-LC	Residential	0	0	5.6	10	2	0	
B003	RCF1r-LC	Health System	0	0	2.8	10	1	0	
B004	RCF1r-LC	Residential	0	0	5.6	10	2	0	
B005	RCF1r-LC	Residential	0	0	2.8	10	1	0	
B006	RCF1r-LC	Education	0	0	8.4	10	3	0	
B007	RCF1r-LC	Governmental	0	0	8.4	10	3	0	
B008	RCF1r-LC	Small Business	0	0	5.6	10	2	0	
B009	RCF1r-LC	Residential	0	0	8.4	10	3	0	
B010	RCF1r-LC	Small Business	0	0	5.6	10	2	A	~
<									>
						Li Li	18, Col 67 100% W	(indows (CRLF) UTF-8	

Import Portfolio STRUCTURE Data

In the Section <u>*Portfolio Data*</u> and by clicking on the module <u>*STRUCTURE*</u> the structure details of the assets can be imported by clicking on the <u>*Import*</u> button.

ALL	LOCATION	UCTURE										
	Risk Identification	Typology	Use	Width (m)	Lengt	h (m)	Height (m) Conta	ct Pressure per story (kPa)	Stories Above Ground	Stories Below Ground	Shape 1
1	B001			0.00	0.00		0.00	0.00				\checkmark
2	B002			0.00	0.00		0.00	0.00				\checkmark
3	B003			0.00	0.00	•	0.00	0.00			~	~
1	B004			0.00	0.00	•	Import stru	cture data	1		~	\checkmark
5	B005			0.00	0.00	Loo	k in:	D:\LIQ	JEFACT\PortfolioData-STRUC	TURE 🔻 🧿 🕄	• 🖗 🗉 🔳	~
5	B006			0.00	0.00		🔵 My Com	puter	Name		^	\checkmark
7	B007			0.00	0.00		abdel 🙎		ImportData_Portfolio	_STRUCTURE.txt		\checkmark
3	B008			0.00	0.00							\checkmark
	B009			0.00	0.00							~
10	B010			0.00	0.00							\checkmark
11	B011			0.00	0.00				<		>	~
12	B012			0.00	0.00	File	name:		5		Open	\checkmark
13	B013			0.00	0.00	File	s of type: C	SV (*.csv	*.txt)		✓ Cancel	~
14	B014			0.00	0.00		0.00	0.00				~
15	B015			0.00	0.00		0.00	0.00				1

This warning message will show-up, and by clicking on <u>Continue</u> button the STRUCTURE related data will be imported

۷ 🕒	arning ×
	This will override current building structure columns in existing portfolio table.
<u>-</u>	Proceed?
	Continue Stop

ALI	LOCATION S	TRUCTURE								
	Risk Identification	Typology	Use	Width (m)	Length (m)	Height (m)	Contact Pressure per story (kPa)	Stories Above Ground	Stories Below Ground	Shape
1	B001	RCFIr-LC	Education	0.00	0.00	8.40	10.00	3	0	~
2	B002	RCFIr-LC	Residential	0.00	0.00	5.60	10.00	2	0	~
3	B003	RCFIr-LC	Health System	0.00	0.00	2.80	10.00	1	0	~
4	B004	RCFIr-LC	Residential	0.00	0.00	5.60	10.00	2	0	~
5	B005	RCFIr-LC	Residential	0.00	0.00	2.80	10.00	1	0	~
6	B006	RCFIr-LC	Education	0.00	0.00	8.40	10.00	3	0	\checkmark
7	B007	RCFIr-LC	Governmental	0.00	0.00	8.40	10.00	3	0	~
8	B008	RCFIr-LC	Small Business	0.00	0.00	5.60	10.00	2	0	\checkmark
9	B009	RCFIr-LC	Residential	0.00	0.00	8.40	10.00	3	0	~
10	B010	RCFIr-LC	Small Business	0.00	0.00	5.60	10.00	2	0	~
11	B011	RCFIr-LC	Residential	0.00	0.00	2.80	10.00	1	0	~
12	B012	RCFIr-LC	Residential	0.00	0.00	5.60	10.00	2	0	~
13	B013	RCFIr-LC	Education	0.00	0.00	2.80	10.00	1	0	\checkmark

Note that the software will combine the <u>STRUCTURE</u> data with the already imported <u>LOCATION</u> (imported from section Type and Level of Analysis) and presented all together in the *Portfolio Data* section.

The assets LOCATION data can be viewed by clicking on the module LOCATION.

ALL	LOCATION STRU	JCTURE										
	Risk Identification	Latitude	Longitude	Street	District	Municipal	City	Region	Postal Code	Geo-code	Shape	^
134	B134	44.800227	11.413087	Via 8 Marzo	D02	Bologna	Bologna	Emilia-Romagna	40100	6	~	
135	B135	44.800056	11.412687	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	7	~	
136	B136	44.799920	11.412340	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	
137	B137	44.799812	11.411828	Via 8 Marzo	D02	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	
138	B138	44.799695	11.411396	Via Risorgimento	D02	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	
139	B139	44.799535	11.411701	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	
140	B140	44.800449	11.411904	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	7	~	
141	B141	44.800235	11.412270	Via Risorgimento	D03	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	
142	B142	44.800365	11.411440	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	
143	B143	44.800125	11.410705	Via Risorgimento	D03	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	
144	B144	44.800179	11.410959	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	
145	B145	44.800263	11.411184	Via 8 Marzo	D02	Bologna	Bologna	Emilia-Romagna	40100	7	~	
146	B146	44.800238	11.411681	Via Gioacchino Rossini	D03	Bologna	Bologna	Emilia-Romagna	40100	7	\checkmark	

Example viewing the combined LOCATION and STRCUTURE data in the LIQUEFACT software by clicking on the module <u>ALL</u>.

	ALL	OCATION	STR	UCTURE															
1	lisk Identification	Latitude	Longitude	Street	District	Municipal	City	Region	Postal Code	Geo-code	Typology	Use	Width (m)	Length (m)	Height (m)	Contact Pressure per story (kPa)	Stories Above Ground	Stories Below Ground	Shape
34	B134	44.800227	11.413087	Via 8 Marzo	D02	Bologna	Bologna	Emilia-Romagna	40100	6	RCFhr-LC	Residential	4.00	9.00	22.40	15.00	8	0	~
35	8135	44.800056	11,412687	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	7	RCFhr-LC	Residential	6.00	12.00	28.00	15.00	10	0	~
36	B136	44.799920	11.412340	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	7	RCFhr-LC	Residential	10.00	7.00	25.20	15.00	9	0	~
37	8137	44.799812	11,411828	Via 8 Marzo	D02	Dologna	Eclogna	Emilia-Romagna	40100	7	RCFM-LC	Residential	7.00	15.00	22.40	15.00	٥	•	
38	B138	44.799695	11.411396	Via Risorgimento	D02	Bologna	Bologna	Emilia-Romagna	40100	7	RCFhr-LC	Repdettal	6.00	15.00	22.40	15.00	8	0	v
39	B139	44,799535	11.411701	Via Gioacchino Rossini	D01	Bologna	Bologna	Emilia-Romagna	40100	7	RCFhr-LC	Governmental Education	5.00	14.00	25.20	15.00	9	0	~
40	B140	44.800449	11.411904	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	7	RCFhr-LC	Small Business Business Center	8.00	20.00	28.00	15.00	10	0	~
41	8141	44.800235	11.412270	Via Risorgimento	D03	Bologna	Bologna	Emilia-Romagna	40100	7	RCFhr-LC	Governmental	7.00	18.00	22.40	15.00	8	0	4
42	8142	44.800365	11.411440	Via Paolo Evangelisa	D01	Bologna	Bologna	Emilia-Romagna	40100	7	RCFhr-LC	Residential	6.00	16.00	30.80	15.00	11	0	~
43	8143	44.800125	11.410705	Via Risorgimento	D03	Bologna	Bologna	Emilia-Romagna	40100	7	RCFhr-LC	Residential	10.00	7.00	22.40	15.00	8	0	~
44	B144	44.800179	11,410959	Via 8 Marzo	D01	Bologna	Bologna	Emilia-Romagna	40100	7	RCFM-LC	Residential	13.00	19.00	25.20	15.00	9	0	~
45	8145	44.800263	11,411184	Via 8 Marzo	D02	Bologna	Bologna	Emilia-Romagna	40100	7	RCFM-LC	Residential	10.00	21.00	25.20	15.00	9	0	4
4	D1.64	A4 000220	11.411601	Via Ginarchino Porriei	003	Balaana	Ralanas	Emile.Pomenne	40100	7	DCEN.I.C.	Daridantial	15.00	e.nn	33.AD	15.00	0	0	1

All imported LOCATION and STRUCTURE in the Profile Data can be edited and modified in the LIQUEFACT software, by clicking on Add row, Delete rows. Also, in the <u>ALL</u> module the combined assets data can be exported by clicking on the <u>Export</u> button. The combined Portfolio data can be imported as tab-separated CSV, unformatted TXT or SHAPE files (ESRI defined formats).

	ALL	LOCATION	STR	UCTURE									
1	Risk Identification	Latitude	Longitude	Street	District	Municipal	City Region	Postal Code Geo-code Typology Use	Width (m) Length (m) Height (m	Contact Pressure per story (kPa)	Stories Above Ground	Stories Below Ground	Shape
134	B134	44,800227	11.413087	Via 8 Marzo	D02	Bologna	8			15.00	8	0	1
35	B135	44.800055	11.412687	Via Paolo Evangelisa	D01	Bologna	B Coper current per	dene table	^	15.00	10	٥	~
136	B136	44.799920	11,412340	Via Gioacchino Rossini	D01	Bologna	B Look in: D: 13	QUEFACT/PortfolioDeta	• • • • • • •	15.00	9	0	~
137	8137	44.799812	11.411828	Via 8 Marzo	D02	Bologna	8 S My Computer	Name	<u>^</u>	15.00	8	0	~
138	B138	44.799695	11.411395	Via Risorgimento	D02	Selegna	B 🧟 abdel			15.00	8	0	~
199	B139	44.799535	11.411701	Via Gioacchino Rossini	D01	Bologna	0			15.00	9	0	~
140	B140	44.800449	11.411904	Via Paolo Evangelisa	D01	Bologna	8			15.00	10	0	1
141	8141	44.800235	11.412270	Via Risorgimento	D03	Bologna	8	1		15.00	8	0	4
142	B142	44.800365	11.411440	Via Paolo Evangelisa	D01	Bologna	в			15.00	11	0	~
143	B143	44.800125	11.410705	Via Risorgimento	D03	Bologna	B			15.00	8	0	*
144	8144	44.800179	11.410959	Via 8 Marzo	D01	Bologna	8			15.00	9	0	~
145	B145	44.800263	11.411184	Via 8 Marzo	D02	Bologna	8	4		15.00	9	0	~
1.40	R146	44 900729	11 411601	Via Ginarchinn Borrini	502	Robons	P			15.00	9	n	1

NOTE: the STRUCTURE Portfolio Data should be imported after Vulnerability Model is already imported and defined in the software. In case STRUCTURE Portfolio Data is imported first, <u>Error</u> <u>Message</u> will display regarding the undefined TYPOLOGY parameter.

2.4 Mitigation Input Data

For Mitigation analysis, one of the steps required to be implemented by users is to define the target factor and associated value for which a given asset/assets will be selected to undergo mitigation analysis based on the result of hazard and risk analysis. This can be implemented in <u>Settings ></u> <u>Mitigation > Safety Thresholds</u>.

⊖ lpi	2		
LSN	20		
🔿 Loss ratio	0.5		

From <u>Settings > Mitigation > Cost and Benefit</u>, users are required to provide input regarding mitigation technology cost and level of efficiency of each technology that will be considered for mitigation assessment and cost-benefit analysis.

More Details are provided in section <u>Processing Settings</u>, however, it is highly important to note that information provided in this section of Mitigation is very critical, and results of mitigation analysis are sensitive to the input data. It is highly recommended that entered information are provided and reviewed by an experienced local engineer with sufficient knowledge and expertise.

G.I. TECNOLOGY	Mitigation cost / m^3	Expected Mitigation Solution Level (%)
EARTHQUAKE DRAINS	100	80
DEEP DYNAMIC COMPACTION	100	60
VIBRO COMPACTION	0	40
BLASTING COMPACTION	0	50
VIBRO REPLACEMENT	100	55
INDUCED PARTIAL SATURATION	100	45
COMPACTION GROUTING	100	70
LOW PRESSURE GROUTING	100	65
JET GROUTING	0	75
DEEP SOIL MIXING	100	60
Constant discount rate (%)	3	

Once mitigation settings are completed, and by clicking on <u>*Processing*</u> button <u>*Disclaimer message*</u> will be displayed describing conditions of using the Mitigation Analysis System, that is incorporated in the software.

The Disclaimer message asks users to <u>Agree</u> or <u>Disagree</u> to the conditions.

🚯 Disc	laimer ×
	By using the Mitigation Analysis System, the user understands, accepts responsibility for, and agrees to the following conditions and limitations:
	 The Mitigation Analysis System is provided for guidance only. Design decisions should not be based on the software alone.
	 Results of the Mitigation Analysis System should be critically reviewed by an experienced engineer with sufficient expertise and an understanding of the underlying assumptions and limitations of the software.
	 The validity of the results cannot be guaranteed as correct and the mitigation framework results should be independently cross-checked.
	 This software is offered as is, without warranty or promise of support of any kind either expressed or implied.
	Agree Disagree

If users do not accept the conditions by clicking on <u>*Disagree*</u> button the software will not run the analysis, showing the following <u>*Error message*</u>.

If users accept the conditions by clicking on <u>Agree</u> button the software starts the analysis processing.

During the analysis processing, more precisely, when the part related to seismic and liquefaction hazard are completed and level of loss of performance and functionality of individual building/infrastructure assets has been established, users will be directed to develop a customized mitigation measure based on cost-benefit analysis.

Processing	×	Processing	×
Seismic hazard computation		Ligufaction hazard computation	
	30%		78%
Canc	el	Can	ncel

Based on the outcomes of the hazard-risk analysis, a range of mitigation actions are to be identified. In the LIQUEFACT software, 10 types of mitigation technologies are considered and there are all for reducing the hazard level, i.e. for ground improvement mitigation. The mitigation technologies will be ranked according to their impact on improving the assets site ground conditions and on their contribution to improving overall performance of the building/infrastructure assets.

The technologies selection process is based on applicability criteria and score rating considering the most influential factors. The first step in scoring the applicability and eliminate some ground improvement technologies is to define site conditions: if site or location of interest is a free field condition or if there are existing buildings or infrastructures.

1	ype of Analysis and Geo	graphical Region Hazard Data Input Risk Data Input
	Type of analysis	
	Assessment analysis	Hazard, Risk & Mitigation 🔻
	Risk assessment	Physical Impact & Economic 🔹
	Mitigation analysis	Existing Structures 💌
	Geographical region	Existing Structures

Other factors include soil type, stratigraphy, depth of liquefiable zone, size of area to be improved, foundation type, constrains, presence any subsurface obstructions, and environmental compatibility. Table 2 illustrates the list of the factors considered in the system, and they are classified in terms of level of importance to the applicability criteria and weighted accordingly.

Applicability Factors for Ground Improvement	ent Mitigation Technologies
1. Site conditions	1.1) Free field
	1.2) Existing buildings
2. Soil type	2.1) Gravel soils
	2.2) Sandy soils
	2.3) Inorganic silts, clays silts of low to medium plasticity
3. Stratigraphy	3.1) Soil crust
	3.2) No soil crust
4. Depth of the treatment zone	4.1) <3 m
	4.2) 3-12 m
	4.3) 12-18 m
	4.4) 18-25 m
5. Size of area to be improved	5.1) Small (<1000 m ²)
	5.2) Medium (1000-5000 m ²)
	5.3) High (>5000 m ²)
6. Foundation type	6.1) Shallow foundations
	6.2) Deep foundations
7. Project constrains	7.1) Low overhead clearance
	7.2) Adjacent structures

	7.3) Existing utilities
8. Presence of subsurface obstructions	
9. Environmental compatibility	

Select Soil Type for each building/infrastructure asset

Appl	icationable to Ex	isting Buildings/1	infrastructure						
	^ Risk Identification	Soil Type	Stratigraphy	Depth of treatment zone	Size of Area	Foundation Type	Project Constraints	Subsurface Obstructions	Environmental Compatibility
4	B004	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
5	B005	Gravel soils 🗸 🗸	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
6	B006	Gravel soils Sandy soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
7	B007	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
8	B008	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
9	B009	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
10	B010	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
11	B011	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
12	B012	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
				_					

Select Stratigraphy for each building/infrastructure asset

pp	icationable to Exis	sting Buildings	/Infrastructure						
	Risk Identification	Soil Type	Stratigraphy	Depth of treatment zone	Size of Area	Foundation Type	Project Constraints	Subsurface Obstructions	Environmental Compatibility
4	B004	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
5	B005	Gravel soils	Soil crust 🗸 🗸	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
6	B006	Gravel soils	Soil crust No soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
7	B007	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
8	B008	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
9	B009	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
10	B010	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
11	B011	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
12	B012	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
				-					

Select Depth of treatment zone for each building/infrastructure asset

\ppl	icationable to Exis	sting Buildings/	Infrastructure							
	^ Risk Identification	Soil Type	Stratigraphy	Depth of treatment zone	Size of Area	Foundation Type	Project Constraints	Subsurface Obstructions	Environmental Compatibility	1
4	B004	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
5	B005	Gravel soils	Soil crust	<3 m 🗸	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
6	B006	Gravel soils	Soil crust	<3 m 3-12 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
7	B007	Gravel soils	Soil crust	12-18 m 18-25 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
в	B008	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
9	B009	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
10	B010	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
11	B011	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
12	B012	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes	
										1

Select Size of Area for each building/infrastructure asset

ppli	cationable to Exis	sting Buildings/	Infrastructure						
	A Risk Identification	Soil Type	Stratigraphy	Depth of treatment zone	Size of Area	Foundation Type	Project Constraints	Subsurface Obstructions	Environmental Compatibility
ŧ	B004	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
;	B005	Gravel soils	Soil crust	<3 m	Small (<1000 m2) ~	Shallow foundations	Low overhead clearance	No	Yes
5	B006	Gravel soils	Soil crust	<3 m	Small (<1000 m2) Medium (1000-5000 m2)	Shallow foundations	Low overhead clearance	No	Yes
	B007	Gravel soils	Soil crust	<3 m	High (>5000 m2) Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
	B008	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
	B009	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
D	B010	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
1	B011	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
2	B012	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
				-		<u>.</u>			

Select Foundation Type for each building/infrastructure asset

Appl	icationable to Exis	sting Buildings/	Infrastructure						
	Risk Identification	Soil Type	Stratigraphy	Depth of treatment zone	Size of Area	Foundation Type	Project Constraints	Subsurface Obstructions	Environmental Compatibility
4	B004	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
5	B005	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
6	B006	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations Deep foundations	Low overhead clearance	No	Yes
7	B007	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
з	B008	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
9	B009	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
10	B010	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
11	B011	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
12	B012	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
				_					

Select Project constraints at the site of each building/infrastructure asset

\ppl	icationable to Exis	sting Buildings/	Infrastructure						
	^ Risk Identification	Soil Type	Stratigraphy	Depth of treatment zone	Size of Area	Foundation Type	Project Constraints	Subsurface Obstructions	Environmental Compatibility
4	B004	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
5	B005	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance 🗸	No	Yes
6	B006	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead dearance Adjacent structures	No	Yes
7	B007	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Existing utilities Low overhead clearance	No	Yes
в	B008	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
)	B009	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
10	B010	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
11	B011	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
12	B012	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
				_					

Select subsurface obstructions at the site of each building/infrastructure asset

\ppl	cationable to Exi	sting Buildings/	Infrastructure						
	A Risk Identification	Soil Type	Stratigraphy	Depth of treatment zone	Size of Area	Foundation Type	Project Constraints	Subsurface Obstructions	Environmental Compatibility
4	B004	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
5	B005	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No 🗸	Yes
6	B006	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	Yes No	Yes
7	B007	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
8	B008	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
9	B009	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
10	B010	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
11	B011	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
12	B012	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes

Select environmental compatibility at the site of each building/infrastructure asset

\pp	icationable to Exi	sting Buildings/	Infrastructure						
	^ Risk Identification	Soil Type	Stratigraphy	Depth of treatment zone	Size of Area	Foundation Type	Project Constraints	Subsurface Obstructions	Environment Compatibilit
4	B004	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
5	B005	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
6	B006	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes No
7	B007	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
8	B008	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
9	B009	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
10	B010	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
11	B011	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes
12	B012	Gravel soils	Soil crust	<3 m	Small (<1000 m2)	Shallow foundations	Low overhead clearance	No	Yes

3 PROCESSING SETTINGS

This section describes the processing settings that users are required to define depending on the user's objectives and target goal of analysis. The settings to be defined are related to:

- Interpolation processing to be defined for generating seismic and liquefaction hazard maps
- Loss factors to be defined for the computation of physical and economic loss
- Definition of liquefaction qualitative risk level classification
- Mitigation parameters to be customized to user's case study

🔁 L	iquefac	tion Refere	nce Guid	e			
File	View	Settings	Help				
		Interpo	lation		1		
		Loss fa	ctors	+			
		Liquefa	action	•			
	Туре	Mitigat	tion	•	Region	Hazard Data Input	Risk Data Input
					_		

3.1 Interpolation Settings

In the LIQUEFACT software, two types of interpolation techniques for generating seismic and liquefaction hazards and the computation of risk: *Geostatistical Interpolation* and *Deterministic Interpolation* procedures.

Interpolation settings incorporated in the LIQUEFACT software.

terpolation method Kriging (using weighted average if Kriging fails) iogram model Stable Manual Kriging ilters Neighborhood filtering Variance filtering Median filtering Shepard's Weighted Average Distance damping rerpolation neighborhood Average minimum distance between exeller	terpolation Settings		
Kriging (using weighted average if Kriging fails) iogram model Stable Manual Kriging ilters Neighborhood filtering Variance filtering Median filtering Shepard's Weighted Average Distance damping erpolation neighborhood Average minimum distance between exeller	erpolation method		
iogram model Stable Manual Kriging Iters Variance filtering Median filtering Shepard's Weighted Average Distance damping expolation neighborhood Average minimum distance between exe@lac	Kriging (using weighted avera	age if Kriging fails)	
ilters Neighborhood filtering Variance filtering Median filtering Shepard's Weighted Average Distance damping erpolation neighborhood Average minimum distance between greefiles	ogram model Stable	Manual Krig	ging
Neighborhood filtering Variance filtering Median filtering Shepard's Weighted Average Distance damping erpolation neighborhood	ilters		
Variance filtering Median filtering Shepard's Weighted Average Distance damping erpolation neighborhood	Neighborhood filtering		
Median filtering Shepard's Weighted Average Distance damping erpolation neighborhood Average profiles) Variance filtering		
Shepard's Weighted Average Distance damping erpolation neighborhood Average profiles	Median filtering		
terpolation neighborhood	Distance damping		
Average minimum distance between profiles	erpolation neighborhood —		
Average minimum distance between profiles	Average minimum distance be	tween profiles	
Radius (m) 200	Radius (m) 200		
Deset OK Cancel Help	Peset OK	Cancel	Help

3.1.1 Geostatistical Interpolation – Kriging Method

For Geostatistical Interpolation, *Kriging* method is the procedure that is incorporated in the LIQUEFACT software for generating seismic and liquefaction hazard maps. In this method, options are

provided for variogram model and users can select between <u>Stable</u>, <u>Spherical</u>, <u>Exponential</u>, <u>Gaussian</u>, or <u>Bilinear</u> model. In addition, options for data population filtering is provided.

Note that in case Kriging method fails to interpolate input data, weighted average method of interpolation will be automatically used by the software to generate maps.

Interpolation Settings	Х
Interpolation method Kriging (using weighted average if Kriging fails)	
Variogram model Stable Filters Spherical Spherical Variance filt Bilinear Median filtering Manual Kriging Manu	
Shepard's Weighted Average Distance damping Interpolation neighborhood Average minimum distance between profiles	
O Radius (m) 200	
Reset OK Cancel Help	

Alternatively, user can carry out manual Kriging for the interpolation of the soil and liquefaction input data as shown in the figures below. This can be done by ticking the box "<u>Manual Kriging</u>".

ariogram model	Stable 🔻 🗹 Manua	al Kriging
Filters Neighborh	ood filtering	
O Variance fi	Itering	
O Median filt	ering	
) Shepard's W	eighted Average	
) Shepard's W	eighted Average ce damping	
) Shepard's W Distant nterpolation ne Average min	eighted Average ce damping ighborhood imum distance between profiles	

In this case, use will be required to manually define the Variogram parameters to fit the population variance by defining: the variogram model (Stable, Spherical, Exponential, Gaussian, and Bilinear), Nugget, Sill, Range, Maximum distance, Lag length.

Next, cross-validation graph will be plotted showing result of the choices made manually by the user regarding the selected variogram parameters. The user can use this graph as a guidance cross-checking for a better selection and modelling of the variogram.

3.1.2 Deterministic Interpolation – Weighted Average Method

For Deterministic Interpolation, *Shepard's Weighted Average* is the interpolation technique that is incorporated in the LIQUEFACT software for generating seismic and liquefaction hazard maps.

3.1.3 Interpolation Neighborhood

In addition, options for data interpolation neighbourhood between profiles are provided., where user can select between:

- Average minimum distance between the used data profiles, which will be computed automatically by the software.
- User provide manually an estimation of the radius between the data profiles.

3.2 Loss Factors Settings

For Risk analysis, one of the steps required to be implemented by users is to define <u>Loss Factor</u> to be associated to fragility and selected vulnerability analysis procedure for the computation of losses. Loss factors should be defined for *Building, Contents* and *Business Interruption*. In general, the values can be different from country to country and should be estimated by an experienced local engineer. Loss Factors can be defined in <u>Settings > Mitigation ></u>.

🚯 L	iquefact	tion Refere	nce Guid	le		
File	View	Settings	Help			
		Interpo	lation			
		Loss fa	ctors	•	Conventional (2 states)	
		Liquefa	iction	•	Conventional (3 states)	
	Type	Mitigat	ion	•	Conventional (4 states)	sk Data Input
		ype of analy	/sis		ESP-based	

Note that the software uses default values, but users can edit these values by double click.

3.2.1 Loss Factors for Conventional Vulnerability Analysis

Loss factor for fragility curves with two Damage Limit States.

Loss Factors (Conventional 2 State)				
	Minor	Complete		
Building	0.1	1		
Contents	0.2	1		
Business Interruption	0	1		
Reset O	K Cancel	Help		

Loss factor for fragility curves with three Damage Limit States.

	Damage Limitation	Significant Damage	Near Collapse
Building	0.1	0.6	1
Contents	0.2	0.7	1
Business Interruption	0	0.5	1

Loss factor for fragility curves with four Damage Limit States.

Loss Factors (Conven	itional 4 State)			×
	Slight	Moderate	Extensive	Complete
Building	0.08	0.33	1	1
Contents	0.2	0.5	0.85	1
Business Interruption	0	0.15	1	1
Reset		ОК	Cancel	Help

3.2.2 Loss Factors for ESP-based Vulnerability Analysis

Loss factor for ESP-based fragility curves.

	Structural (DS1)	Structural (DS2)	Structural (DS3)	Foundation (Repairable)	Foundation (Irrepairable)	Demolition and Replacement Cost	Replace Cost from Collapse
Building	0.1	0.2	0.5	0.3	1	1	1
Contents	0.2	0.5	0.7	0.4	1	1	1
Business Interruption	0	0.15	1	0.1	1	1	1

3.3 Liquefaction Risk Levels Definition Settings

In the LIQUEFACT software, the resulted values of liquefaction severity indicator in terms of LPI and LSN are also presented in form of Risk Level Qualitative Classification, in order to help non-technical end-users to easily understand the estimated level of risk of liquefaction-induced ground deformation.

In literature various qualitative-based classification definitions associated with LPI and LSN range values have been introduced in order to quantify the different liquefaction risk level to the ground.

For LPI, the ranges values associated to the different risk level classes are by default mainly adopted and modified from the classes suggested by Iwasaki et al. (1978). However, users can always modify

these ranges values, by going from <u>Settings</u> to <u>Liquefaction</u> and then Risk levels (LPI), and click on <u>Edit</u> button to modify the LPI range.

For LSN, the ranges values associated to the different risk level classes are by default mainly adopted and modified from the classes suggested by Tonkin and Taylor (2013). However, users can always modify these ranges values, by going from <u>Settings</u> to <u>Liquefaction</u> and then Risk levels (LSN), and click on <u>Edit</u> button to modify the LSN range.

Liquefaction	Reference Guide				
ile View Set	ttings Help				
	Interpolation				
	Loss factors	•			
	Liquefaction	 Risk levels (LSN) 			
Type	Mitigation	 Risk levels (LPI) 	Risk Data Input		
]	
A 11 m 4 m 4	ian Diala Laurala (I	DD		refaction Risk Levels (
	ion Risk Levels (I	LPI)			-5NY
Classi	ification	LPI Range		Classification	LSN Range
No Liquefact	tion Risk	LPI = 0	No Lic	uefaction Risk	LSN < 5
Low Liquefa	ction Risk	0 < LPI <= 2	Low Li	quefaction Risk	5 < LSN <= 10
Moderate Lie	quefaction Risk	2 < LPI <= 5	Mode	rate Liquefaction Risk	10 < LSN <= 30
High Liquefa	action Risk	5 < LPI <= 15	High l	iquefaction Risk	30 < LSN <= 50
Very High Lie	quefaction Risk	LPI > 15	Very H	igh Liquefaction Risk	LSN > 50
]			t.	
Edit		OK Help		מכ	UK Help

3.4 Mitigation Definition Settings

Mitigation definition settings provide users with options on how a given asset/assets is selected to undergo mitigation analysis, and to define the various ground improvement technologies that will be considered for the cost-benefit analysis.

۵ ا	.iquefac	tion Refere	nce Guid	le		
File	View	Settings	Help			
		Interpo	lation			
		Loss fa	ctors	•		
		Liquefa	action	•		
	Туре	Mitigat	tion	•	Safety thresholds	Risk Data Input
	ГТ	ype of analy	/sis		Cost and benefit	

Important to note that information provided in this section of Mitigation is very critical, and results of mitigation analysis are sensitive to the input data. It is highly recommended that the information

entered in this section is provided and reviewed by an experienced local engineer with sufficient knowledge and expertise.

3.4.1 Mitigation Safety Threshold Settings

This is a very important step where users can define the target factor and the associated value for which a given asset(s) will be selected to undergo mitigation analysis based on the result of hazard and risk analysis. The target factor and the associated value can be in terms of:

- Liquefaction Potential Index
- Liquefaction Severity Number
- Loss Ratio

🔾 LPI	2	
ISN LSN	20	
O Loss ratio	0.5	

3.4.2 Mitigation Cost and Benefit Settings

Here users can define which ground improvement technologies that will be considered for Cost-Benefit Analysis.

• In the Section <u>Mitigation cost/m³</u> users can define the local currency cost in m³ for each technology. Values can be entered by double click on each cell.

For any given mitigation technology, if the cost is left with zero "0" value then the technology will not be considered in the mitigation analysis

- In the Section *Expected Mitigation Solution Level (%)*: users are required to provide their best estimate for the level of efficiency of a given technology in terms of improving ground condition. If provided, the value must be in percentage (%) and can range from 0% to 100%.
- Constant discount rate (%): is determined from interest rates and adjusted for inflation, and traditionally ranges from 2% to 6%. A default rate value of 3% is used, but users can modify and provide their own value representing the local currency and region.

G.I. TECNOLOGY	Mitigation cost / m^3	Expected Mitigation Solution Level (%)
EARTHQUAKE DRAINS	100	80
DEEP DYNAMIC COMPACTION	100	60
VIBRO COMPACTION	0	40
BLASTING COMPACTION	0	50
VIBRO REPLACEMENT	100	55
INDUCED PARTIAL SATURATION	100	45
COMPACTION GROUTING	100	70
LOW PRESSURE GROUTING	100	65
JET GROUTING	0	75
DEEP SOIL MIXING	100	60
Constant discount rate (%)	3	

4 SOFTWARE ANALYSIS RESULTS/OUTPUT

This section provides detailed description on the different analysis outcomes and results that users can obtain form each case of selected analysis type, and interpretation of the results.

4.1 Pre-Processing and Results

Once the analysis process is finished, the <u>Result</u> button is activated, where all the results of analysis are presented. It is also possible to click <u>Pre-Processing</u> button to review the different input data but cannot be changed or modified. If users wish to modify input data than this can be done by clicking on lock icon to unlock the software and make modification/changes in the data input. However, unlocking the software will also clear results (i.e. all analysis results will be lost).

4.2 Hazard Analysis Output

Results of Hazard analysis are presented in terms of GIS-based Seismic Ground Shaking and Liquefaction Risk at the locations of interest. The results are presented as tables and interpolation-based maps.

4.2.1 Seismic Hazard Analysis Output

Seismic Hazard Analysis Output	Description
Parameters	
Hazard Identification	Identification number representing each soil profile used in the analysis
	(when List Profiles is selected) or resulted from interpolation (when List
	is selected)
PGA	Ground shaking at bedrock
PGA (amplified)	Ground shaking at ground surface

When *List (Profile)* is selected, the displayed results represent the outcomes of seismic hazard analysis in terms of peak ground acceleration computed for each soil profile.

azard Analy	sis Output	Risk Analysis	Output Mi	tigation Analysis Ou	itput				
Seismic Gro	Ground Shaking Ground Liqu		uefaction						
List (Profiles) Map List									
List (P	rofiles) Hazard Ide	ntification	Latitude	Longitude	PGA	PGA (amplified)	^		
1	G0	01	44.798700	11.404400	0.083305	0.133288			
2	G002		44.798700	11.405200	0.083305	0.133288			
3	G003		44.798700	11.406000	0.083305	0.133288			
4	G0	04	44.798700	11.406800	0.083305	0.208262			
5	G0	05	44.798700	11.407700	0.083305	0.208262			
6	G0	06	44.798700	11.408500	0.083305	0.208262			
7	G0	07	44.798700	11.409300	0.083305	0.208262			
8	GO	08	44.798700	11.410100	0.083305	0.208262			
9	GO	09	44.798700	11.410900	0.083305	0.208262			
10	G0	10	44.798700	11.411800	0.083305	0.208262			
11	G0	11	44.798700	11.412600	0.083305	0.133288	v		
						Export			

When <u>List</u> is selected, the displayed results represent the outcomes of seismic hazard analysis in terms of peak ground acceleration (PGA) resulted from the interpolation of the PGA values that were computed for each soil profile.

rd Analy	sis Output	Risk Analysis	Output Mitigation	Analysis Output		
ismic Gro	ound Shaking	Ground Liqu	efaction			
List	-					
List	rafias)					
LIST (P	Hazard Ider	ntification	Latitude	Longitude	PGA (amplified)	Ì
1	HAZARD-ID-00001		44.798600	11.404400	0.153876	
2	HAZARD-ID-00002		44.798700	11.404400	0.153066	
3	HAZARD-ID-00003		44.798800	11.404400	0.152672	
4	HAZARD-	ID-00004	44.798900	11.404400	0.152392	
5	HAZARD-	ID-00005	44.799000	11.404400	0.152049	
6	HAZARD-	ID-00006	44.799100	11.404400	0.151629	
7	HAZARD-	ID-00007	44.799200	11.404400	0.151284	
8	HAZARD-	ID-00008	44.799300	11.404400	0.151303	
9	HAZARD-	ID-00009	44.799400	11.404400	0.151839	
10	HAZARD-	ID-00010	44.799500	11.404400	0.152697	
<					>	
					Export.	

When <u>Map</u> is selected, then ground shaking PGA map resulted from the interpolation is displayed.

4.2.2 Quantitative Liquefaction Hazard Analysis Output

Quantitative Liquefaction Hazard Analysis Output Parameters	Description
Hazard Identification	Identification number representing each soil profile used in the analysis (when List Profiles is selected) or resulted from interpolation (when List
	is selected)
PGA (amplified)	Ground shaking at ground surface that was assigned to each liquefaction profile for the computation of liquefaction hazard
PGA Assignment	ID of PGA that was assigned to the liquefaction profile
LPI	Liquefaction Potential Index
Settlement (cm)	Free field settlement in cm unit
LSN	Liquefaction Severity Number
LSN (ESP)	Liquefaction Severity Number estimated from ESP-based method
ESP	Equivalent Soil Profile Class (from the 22 classes)
Liquefaction Risk Level (LPI-based)	Qualitative evaluation of liquefaction risk level based on LPI range values
Liquefaction Risk Level (LSN- based)	Qualitative evaluation of liquefaction risk level based on LSN range values

When *List (Profile)* is selected, the displayed results represent the outcomes of liquefaction hazard analysis in terms of multi-liquefaction severity indicators computed for each CPT, SPT or Vs profile.

Analys	sis Output	Risk Anal	ysis Output	Mitigation	Analysis Outp	ut							
nic Grou	und Shaking	Ground	Liquefaction										
List (i	Profiles)	•											
LSN-I LSN F	Map Risk Level Map												
LPI-M LPI R ESP-1	1ap iisk Level Map Map	tion	Latitude	Longitude	PGA (amplified)	PGA Assignment	LPI	Settlement (cm)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Leve (LSN-Based)
GD-M List	lap		44.803500	11.407200	0.208262	G109	4.0972	15.2665	21.3570	54.3492	WLS	Moderate	Moderate
List (i 41	Profiles) 18513005	08	44.803900	11.408500	0.208262	G126	2.3410	8.9604	9.9407	34.8708	WLM	Moderate	Low
42	18513005	09	44.805000	11.408900	0.208262	G141	2.3458	8.9634	9.9246	36.2930	WLM	Moderate	Low
43	18513005	10	44.804400	11.410300	0.133288	G128	0.0000	1.2012	1.3191	0.0000	RXX	None	None
44	18513005	11	44.804900	11.411300	0.133288	G144	0.0000	1.4252	2.6601	0.0000	RXX	None	None
45	18513005	12	44.805000	11.412800	0.133288	G146	0.0000	2.3351	4.4500	0.0000	RXX	None	None
46	18513005	13	44.806700	11.414600	0.208262	G193	5.2020	15.5538	19.9925	54.3456	WLM	High	Moderate
47	18513005	14	44.808500	11.415300	0.133288	G224	0.0000	2.8011	4.0662	0.0000	RXX	None	None
48	185140C1	74	44.806900	11.418700	0.208262	G195	0.2331	3.1921	6.5475	31.1152	WLD	Low	Low
49	185140C1	75	44.805000	11.418900	0.133288	G150	0.0000	0.6316	1.0810	0.0000	RXX	None	None
													-

When <u>List</u> is selected, the displayed results represent the outcomes of liquefaction hazard analysis in terms of multi-liquefaction severity indicators resulted from the interpolation of the indicators values that were computed for each CPT, SPT or VS profile.

nic Grou	nd Shaking	Ground Liq	uefaction								
List	.▼ Ian										
LSN R	isk Level Map			~							1
LPI-Mi LPI Ris ESP-M	ap sk Level Map Iap	ication	Latitude	Longitude	LPI	Settlement (cm)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Le (LSN-Based)
GD-Ma List	ар	00052	44.803600	11.404400	1.4784	8.7299	13.1510	37.9094	WLM	Low	Moderate
List (P 53	rofiles) HAZARD-ID	-00053	44.803700	11.404400	1.4784	8.7299	13.1510	37.9094	WLM	Low	Moderate
54	HAZARD-ID	-00054	44.803800	11.404400	1.1104	6.6056	10.0529	28.4739	WLD	Low	Moderate
55	HAZARD-ID	-00055	44.803900	11.404400	0.9892	5.9058	9.0325	25.3661	WLD	Low	Low
56	HAZARD-ID	-00056	44.804000	11.404400	0.8320	4.9984	7.7092	21.3360	WMD	Low	Low
57	HAZARD-ID	-00057	44.804100	11.404400	0.6500	3.9474	6.1765	16.6677	WMD	Low	Low
58	HAZARD-ID	-00058	44.804200	11.404400	0.4636	2.8713	4.6072	11.8882	WMD	Low	None
59	HAZARD-ID	-00059	44.804300	11.404400	0.2963	1.9053	3.1985	7.5978	WTD	Low	None
60	HAZARD-ID	-00060	44.804400	11.404400	0.1653	1.1490	2.0955	4.2388	WTD	Low	None
61	HAZARD-ID	-00061	44.804500	11.404400	0.0000	0.1946	0.7038	0.0000	RXX	None	None

Liquefaction Potential Index LPI

When <u>LPI-Map</u> is selected, then the Liquefaction Potential Index-based map resulted from the interpolation is displayed.

Example of resulted Liquefaction Severity Indicator maps in terms of Liquefaction Potential Index (LPI), as provided in the LIQUEFACT software.

When <u>LPI Risk Level Map</u> is selected, then the qualitative-based liquefaction risk classification map in terms of Liquefaction Potential Index (LPI), and resulted from the interpolation, is displayed.

Example of resulted LPI Risk level classification maps, as presented in the LIQUEFACT software.

Liquefaction Severity Number LSN

When *LSN-Map* is selected, then the Liquefaction Severity Number-based map resulted from the interpolation is displayed.

Example of resulted Liquefaction Severity Indicator maps in terms of Liquefaction Severity Number (LSN), as provided in the LIQUEFACT software.

When <u>LSN Risk Level Map</u> is selected, then the qualitative-based liquefaction risk classification map in terms of Liquefaction Severity Number (LSN), and resulted from the interpolation, is displayed.

Example of resulted LSN Risk level classification maps, as presented in the LIQUEFACT software.

innovation programme under grant agreement No. 700748 LIQUEFACT Deliverable 6.6 LIQUEFACT Software – Technical Manual and Application v. 1.0

Liquefaction-Induced Ground Settlements

When <u>**GD-Map</u>** is selected, then the Ground Deformation Free-Field Settlement -based map resulted from the interpolation is displayed.</u>

Example of resulted Liquefaction Severity Indicator in terms of Ground Deformation Free-Field Settlement, as presented in the LIQUEFACT software.

Equivalent Soil Profile (ESP)-based Classification

When *ESP-Map* is selected, then the Equivalent Soil Profile-based map resulted from the interpolation is displayed.

Example of resulted Liquefaction Severity Indicator in terms of Equivalent Soil Profile (ESP), as presented in the LIQUEFACT software.

4.2.3 Qualitative Liquefaction Hazard Analysis Output

In the LIQUEFACT software, when user-supplied liquefaction hazard maps are used either through the selection of <u>User-Defined</u> or <u>Pre-Defined</u> option, location-specific levels of liquefaction hazard are not interpolated, and closest location-specific to a given asset is assigned for the evaluation of liquefaction risk.

4.2.3.1 User-Defined Liquefaction Hazard Output

Example analysis output for user-supplied liquefaction hazard map in terms of Liquefaction Hazard

zard Anal	ysis Output	Risk Anal	ysis Output	Mitigation	Analysis Out	put	
	ound Shaking	Ground	Liquefaction	1			
			Latituda	Landarda	Caracte	Linut dia Uma	•
_	Hazard Iden	tification	Latitude	Longitude	Geo-code	Liquefaction Hazard	
1	800	/	44.804201	11.405951	2	Liquetaction	
8	B00	8	44.804082	11.405790	2	No Liquefaction	
9	B00	9	44.804159	11.406743	2	Liquefaction	
10	B01	0	44.804034	11.406466	2	Liquefaction	
11	B01	1	44.803783	11.406423	2	Liquefaction	
12	B012	2	44.803577	11.405844	2	No Liquefaction	
13	B01	3	44.803335	11.405187	2	No Liquefaction	
14	B014	4	44.803718	11.405271	2	No Liquefaction	
15	B01	5	44.803853	11.405559	2	No Liquefaction	
16	B01	6	44.803192	11.404738	2	No Liquefaction	
17	B01	7	44.803499	11.405588	2	No Liquefaction	
18	B01	8	44.804262	11.411034	1	Non-susceptible	
19	B019	9	44.803789	11.410564	1	Non-susceptible	~
							Export

Example analysis output for user-supplied liquefaction hazard map in terms of Liquefaction Potential Index (LPI)

	Hazard Identification	Latitude	Longitude	Geo-code	Liquefaction Probability Index (LPI)	^
1	B001	44.804876	11.406691	2	Very High Liquefaction Risk	
2	B002	44.804555	11.406245	2	Moderate Liquefaction Risk	
3	B003	44.804744	11.407085	2	Very High Liquefaction Risk	
4	B004	44.804298	11.407708	2	Moderate Liquefaction Risk	
5	B005	44.804456	11.407388	2	Moderate Liquefaction Risk	
6	B006	44.804078	11.407326	2	Moderate Liquefaction Risk	
7	B007	44.804261	11.405951	2	Moderate Liquefaction Risk	
8	B008	44.804082	11.405790	2	Low Liquefaction Risk	
9	B009	44.804159	11.406743	2	Moderate Liquefaction Risk	
10	B010	44.804034	11.406466	2	Moderate Liquefaction Risk	
11	B011	44.803783	11.406423	2	Moderate Liquefaction Risk	
12	B012	44.803577	11.405844	2	Low Liquefaction Risk	
13	B013	44.803335	11.405187	2	Low Liquefaction Risk	

Example analysis output for user-supplied liquefaction hazard map in terms of Liquefaction Severity Number (LSN)

	Hazard Identification	Latitude	Longitude	Geo-code	Liquefaction Severity Number (LSN)
1	B001	44.804876	11.406691	2	Very High Liquefaction Risk
2	B002	44.804555	11.406245	2	Moderate Liquefaction Risk
3	B003	44.804744	11.407085	2	Very High Liquefaction Risk
4	B004	44.804298	11.407708	2	Moderate Liquefaction Risk
5	B005	44.804456	11.407388	2	Moderate Liquefaction Risk
6	B006	44.804078	11.407326	2	Moderate Liquefaction Risk
7	B007	44.804261	11.405951	2	Moderate Liquefaction Risk
8	B008	44.804082	11.405790	2	Low Liquefaction Risk
9	B009	44.804159	11.406743	2	Moderate Liquefaction Risk
10	B010	44.804034	11.406466	2	Moderate Liquefaction Risk
11	B011	44.803783	11.406423	2	Moderate Liquefaction Risk
12	B012	44.803577	11.405844	2	Low Liquefaction Risk
13	B013	44.803335	11.405187	2	Low Liquefaction Risk

Example analysis output for user-supplied liquefaction hazard map in terms of Probability of Liquefaction (PL)

	Aazard Identification	Latitude	Longitude	Geo-code	Probability of Liquefaction (PL)	-
1	B001	44.804876	11.406691	2	Very High Liquefaction Risk	
2	B002	44.804555	11.406245	2	Moderate Liquefaction Risk	
3	B003	44.804744	11.407085	2	Very High Liquefaction Risk	
4	B004	44.804298	11.407708	2	Moderate Liquefaction Risk	
5	B005	44.804456	11.407388	2	Moderate Liquefaction Risk	
6	B006	44.804078	11.407326	2	Moderate Liquefaction Risk	
7	B007	44.804261	11.405951	2	Moderate Liquefaction Risk	
8	B008	44.804082	11.405790	2	Low Liquefaction Risk	
9	B009	44.804159	11.406743	2	Moderate Liquefaction Risk	
10	B010	44.804034	11.406466	2	Moderate Liquefaction Risk	
11	B011	44.803783	11.406423	2	Moderate Liquefaction Risk	
12	B012	44.803577	11.405844	2	Low Liquefaction Risk	
13	B013	44.803335	11.405187	2	Low Liquefaction Risk	

4.2.3.2 Pre-Defined Liquefaction Hazard Output

Example analysis output for a selected return period of pre-defined European macrozonation liquefaction hazard.

iomic C	round Shaking	Ground	Liquefaction				
ismic G	rounu snaking	Ground	Liquelacio				
	Hazard Iden	tification	Latitude	Longitude	Geo-code	Liquefaction Hazard	
	nazaru luen		Latitude	to appear	10	Elqueraction hazard	
40	B040	J	44.805121	11.413986	10	No Liquefaction	
41	B04	1	44.804970	11.413615	10	No Liquefaction	
42	B042	2	44.804784	11.413260	10	Non-susceptible	
43	B043	3	44.804500	11.412669	10	Non-susceptible	
44	B044	4	44.805750	11.413379	10	No Liquefaction	
45	B04	5	44.805377	11.413758	10	No Liquefaction	
46	B046	5	44.804635	11.411978	10	Non-susceptible	
47	B04	7	44.803939	11.407981	3	Liquefaction	
48	B044	3	44.803373	11.408780	3	No Liquefaction	
49	B049	9	44.803244	11.408189	3	Liquefaction	
50	B050)	44.803643	11.407658	3	Liquefaction	
51	B05	1	44.803597	11.408369	3	Liquefaction	
52	B052	2	44.802958	11.409046	3	No Liquefaction	

4.2.4 Export Results of Hazard Analysis

All results and output of Hazard Analysis can be exported by clicking on *Export* button. The results can be exported as SHAPE or CSV by selecting SHAPE or CSV in the file type pulldown menu in the Export dialog. SHAPE files can be exported as points or polygons. The database and result files in various formats will be stored in a project directory.

Export liquefactio	n hazard results table	×
Look in: D:\L	IQUEFACT\Results Hazard Analysis G O G) 🛤 🗉 🔳
S My Computer	Name	
abdel		
	<	>
File name:		Save
Files of type: CSV (*.	sv *.txt)	Cancel
CSV (*. SHAPE (sv *.txt) *.shp *shape)	

4.3 Risk Analysis Output

Results of Risk analysis are presented in terms of GIS-based owner losses and Insurance losses in terms of physical impact (damage to asset/assets), economic, contents and business interruption losses, due to liquefaction and due to ground shaking.

4.3.1 Ground Liquefaction-related Risk Analysis Output

Risk due to ground liquefaction is computed at individual asset (Risk Identification) as well as at Geocode level.

4.3.1.1 Ground Liquefaction related Owner Loss

4.3.1.1.1 Ground Liquefaction related Owner Loss at Asset Level

Ground Liquefaction-related Risk	Description
Analysis Output Parameters for	
Owner Loss at Asset level	
Risk Identification	Identification number representing each asset (building or infrastructure)
Geo-Code	Geo-code unit where each asset is assigned to.
LPI	LPI computed at the location of the asset
Differential Settlement (m)	Differential settlement of each asset due to ground liquefaction
LSN	LSN computed at the location of the asset
LSN (ESP)	LSN (ESP) computed at the location of the asset
ESP	ESP computed at the location of the asset
Liquefaction Risk Level (LPI-Based)	LPI-based qualitative estimation of liquefaction risk at the location of each
Liquefaction Risk Level (ISN-	LSN-based qualitative estimation of liquefaction risk at the location of each
Based)	asset
Probabilities of Damage	Probabilities of Damage computed for each asset. The number of probabilities
	depends on the type of fragility curves used in risk analysis: if the fragility was
	with one, two, three or four Damage Limit States
BUILDING	
Mean Loss Ratio (Building)	Is the mean of building loss ratios of a given number of buildings of same
	Typology located in same Geo-code.
Monetary Values (Building)	Input Data of monetary value of a given building
Loss (Building)	Is computed as Monetary value (Building) multiplied with the Mean Loss Ratio
	(Building).
CONTENTS	
Mean Loss Ratio (Contents)	Is the mean of content loss ratios of a given number of buildings of same
	Typology located in same Geo-code.
Monetary Values (Contents)	Input Data of monetary value of a given content in a given building
Loss (Contents)	Is computed as Monetary value (Contents) multiplied with the Mean Loss Ratio (Contents).
BUSINESS INTERRUPTION	

Mean Loss Ratio (Business	Is the mean of content loss ratios of a given number of buildings of same
Interruption)	Typology located in same Geo-code.
Business Revenue	Input Data of business revenue of a given building
Loss (Business Interruption)	Is computed as Business revenue multiplied with the Mean Loss Ratio
	(Business Interruption).

When <u>ALL</u> is selected, the displayed results represent all the outcomes of ground liquefaction-related Owner Loss at Asset Level

Dune	r Loss 🔹 Risk I	dentification	•																
ALL	BUILDING CONT	ENTS BUS	DIESS INTER	RUPTION															
	Risk Identification	Latitude	Longitude	Geo-code	LPI	Differential Settlement (m)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Level (LSN-Based)	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Building)	Monetary Values (Building)	Loss (Building)	Mean Los (Conte
12	B212	44.805800	11.408400	11	17.1860	0.1157	15.3130	59.4760	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	109 240.00	109 240.00	1.000000
13	8213	44.805800	11.408800	11	17.9354	0.1388	15.9807	62.0696	WLS	Very Heat	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	301 680.00	301 680.00	1.000000
214	8214	44.806100	11,409600	11	10.8115	0.0658	8.1665	43.2614	WLS	High	Løw	0.0000000	0.000000	0.000000	1.000000	1.000000	109 240.00	109 240.00	1.000000
15	B215	44.805500	11,407800	11	8.3042	0.0629	7.5603	122,8086	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	162 900.00	162 900.00	1.000000
216	B216	44.805400	11.407100	11	1.0703	0.0205	1.1515	84.2147	WMS	Low	None	0.000224	0.009433	0.097783	0.892560	0.993474	282 900.00	281 053.75	0.980437
117	B217	44.805600	11.407100	11	1.2656	0.0230	1.3516	99.5749	WMS	Low	None	0.000060	0.003682	0.053847	0.942411	0.997478	326 150.00	325 327.36	0.990034
18	B218	44.805600	11.411600	-11	13.6450	0.0932	10.3068	54.5994	WLM	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	653 210.00	653 210.00	1.000000
219	B219	44.805800	11.411900	11	10.6313	0.0743	8.0303	42.5402	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	301 680.00	301 680.00	1.000000
220	8220	44.805900	11,412200	11	5.2252	0.0362	2.7130	33.3822	WMS	High	None	0.000000	0.000000	0.000000	1.000000	1.000000	109 240.00	109 240.00	1.000000
221	B221	44.806000	11.412500	-11	14.2675	0.1025	12.7475	81.8204	WLS	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	282 900.00	282 900.00	1.000000
												-							>

When **<u>BUILDING</u>** is selected, the displayed results represent the ground liquefaction-related Building Owner Loss at Asset Level

Owne	r Loss 👻 Risk 3	dentification	•															
ALL	BUILDING CONT	ENTS BUS	INESS INTER	RUPTION														
	Risk Identification	Latitude	Longitude	Geo-code	LPI	Differential Settlement (m)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Level (LSN-Based)	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Building)	Monetary Values (Building)	Loss (Building)
212	B212	44.805800	11,408400	.11	17.1860	0.1157	15.3130	59.4760	WLS	Nery High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	109 240.00	109 240.00
213	B213	44.805800	11.408800	11	17.9354	0.1388	15.9807	62.0696	WLS	Vey High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	301 680.00	301 680.00
214	8214	44.806100	11.409600	11	10.8115	0.0658	8.1665	43.2614	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	109 240.00	109 240.00
215	B215	44.805600	11,407800	11	8.3042	0.0629	7.5603	122.8086	WLS	High	Low	0.0000000	0.0000000	0.000000	1.000000	1.000000	162 900.00	162 900.00
216	B216	44.805400	11,407100	11	1.0703	0.0205	1.1515	\$4.2147	WMS	Low	None	0.000224	0.009433	0.097783	0.892560	0.993474	282 900.00	281 053.75
217	B217	44.805600	11.407100	11	1.2656	0.0230	1.3616	99.5749	WMS	Low	None	0.000060	0.003682	0.053847	0.942411	0.997478	326 150.00	325 327.36
218	8218	44.805600	11.411600	11	13.6450	0.0932	10.3068	54.5994	WLM	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	653 210.00	653 210.00
219	B219	44.805800	11.411900	11	10.6313	0.0743	8.0303	42.5402	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	301 680.00	301 680.00
220	8220	44.805900	11.412200	11	5.2252	0.0362	2.7130	33,3822	WMS	High	None	0.000000	0.000000	0.000000	1.000000	1.000000	109 240.00	109 240.00
221	B221	44.806000	11.412500	11	14.2675	0.1025	12.7475	81.8204	WLS	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	282 900.00	282 900.00
222	8222	44.806100	11,413000	11	10.3904	0.0668	9.2834	59.5863	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	326 150.00	326 150.00

When <u>CONTENTS</u> is selected, the displayed results represent the ground liquefaction-related Contents Owner Loss at Asset Level

wne	r Loss 🔻 Ri	k Identificatio	1. *															
4L	BUILDING	NTENTS	SINESS INTER	RUPTION														
	Risk Identificati	n Latitude	Longitude	Geo-code	LPI	Differential Settlement (m)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Level (LSN-Based)	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Contents)	Monetary Values (Contents)	Loss (Contents)
12	B212	44.80580	11.406400	11	17.1860	0.1157	15.3130	59,4760	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	10 924.00	10 924.00
13	B213	44.80580	11.408800	11	17.9354	0.1388	15.9807	62.0696	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	75 420.00	75 420.00
14	8214	44.80610	11.409600	11	10.8115	0.0658	8.1665	43.2614	WLS	High .	Low	0.000000	0.000000	0.000000	1.000000	1.000000	10 924.00	10 924.00
15	8215	44.80560	11,407800	11	8.3042	0.0629	7.5603	122.8086	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	6 516.00	6 516.00
16	B216	44.80540	11.407100	11	1.0703	0.0205	1.1515	84.2147	WMS	Low	None	0.000224	0.009433	0.097783	0.892560	0.980437	56 580.00	55 473.12
17	8217	44.80560	11.407100	11	1.2656	0.0230	1.3616	99.5749	WMS	Low	None	0.000060	0.003682	0.053847	0.942411	0.990034	65-230.00	64 579.91
18	B218	44.80560	11.411600	11	13.6450	0.0932	10.3068	54.5994	WLM	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	653 210.00	653 210.00
19	8219	44.80580	11.411900	11	10.6313	0.0743	8.0303	42.5402	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	75 420.00	75 420.00
20	B220	44.80590	11.412200	11	5.2252	0.0362	2.7130	33.3822	WMS	High	None	0.000000	0.000000	0.000000	1.000000	1.000000	10 924.00	10 924.00
21	B221	44.80600	11.412500	11	14.2675	0.1025	12.7475	81.8204	WLS	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	56 580.00	56 580.00
																		>

When **<u>BUSINESS INTERRUPTION</u>** is selected, the displayed results represent the ground liquefactionrelated Business Interruption Owner Loss at Asset Level

Dwne	Loss • Risk I	dentification	•															
ALL	BUILDING CONT	ENTS BUS	SINESS INTER	RUPTION														
	A Risk Identification	Latitude	Longitude	Geo-code	LPI	Differential Settlement (m)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Level (LSN-Based)	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Interruption)	Business Revenue	Loss (Interruption)
12	B212	44.805800	11.408400	11	17.1860	0.1157	15.3130	59.4760	WLS	Very Maph	Moderate	0.0000000	0.000000	0.000000	1.000000	1.000000	109.24	109.24
13	8213	44.805800	11.408800	11	17.9354	0.1388	15.9807	62.0696	WLS.	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	301.68	301.68
14	B214	44.806100	11.409600	11	10.8115	0.0658	8.1665	43.2614	WLS	High	Low	0.0000000	0.000000	0.000000	1.000000	1.000000	109.24	109.24
15	B215	44.805600	11.407800	11	8.3042	0.0629	7.5603	122.8086	WL5	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	162.90	162.90
16	B216	44.805400	11.407100	- 11	1.0703	0.0205	1.1515	84.2147	WMS	Low	None	0.000224	0.009433	0.097783	0.892560	0.991758	282.90	280.57
17	B217	44.805600	11.407100	11	1.2656	0.0230	1.3616	99.5749	WMS	Low	None	0.000060	0.003682	0.053847	0.942411	0.995810	326.15	325.11
18	8218	44.805600	11.411600	11	13.6450	0.0932	10.3068	54.5994	WLM	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	653.21	653.21
19	B219	44.805800	11.411900	- 11	10.6313	0.0743	8.0303	42.5402	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	301.68	301.68
20	B220	44.805900	11.412200	11	5.2252	0.0362	2.7130	33.3822	WMS	High	None	0.000000	0.000000	0.000000	1.000000	1.000000	109.24	109.24
221	B221	44.806000	11.412500	11	14.2675	0.1025	12.7475	81.8204	WLS	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	282.90	282.90
222	B222	44.806100	11.413000	11	10.3904	0.0668	9.2834	59.5863	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	326.15	326.15

4.3.1.1.2 Ground Liquefaction related Owner Loss at Geo-code Level

Ground Liquefaction-related Risk	Description
Analysis Output Parameters for	
Owner Loss at Geo-code level	
Mean Loss Ratio (Buildings)	Is the mean of loss ratios of all buildings located in a given Geo-code.
Monetary Values (Buildings)	Input Data of total monetary values of all buildings located in a given Geo-
	code.
Loss (Buildings)	Is computed as Total Monetary value (Buildings) multiplied with the Mean
	Loss Ratio (Buildings), in a given Geo-code.
Mean Loss Ratio (Contents)	Is the mean of loss ratios of all Contents located in a given Geo-code.
Monetary Values (Contents)	Input Data of total monetary values of all Contents located in a given Geo-
	code.
Loss (Contents)	Is computed as Total Monetary value (Contents) multiplied with the Mean
	Loss Ratio (Contents), in a given Geo-code.

Mean Loss Ratio (Businesses)	Is the mean of loss ratios of all Businesses located in a given Geo-code.
Monetary Values (Businesses)	Input Data of total monetary values of all Businesses located in a given Geo-
	code.
Loss (Businesses)	Is computed as Total Monetary value (Businesses) multiplied with the Mean
	Loss Ratio (Businesses), in a given Geo-code.
Total Loss	Total loss in a given Geo-code

Owner	er Loss	▼ Geo-co	de	•									
G	Geo-code	Latitude	Longitude	Mean Loss Ratio (Buildings)	Monetary Values (Buildings)	Loss (Buildings)	Mean Loss Ratio (Contents)	Monetary Values (Contents)	Loss (Contents)	Mean Loss Ratio (Businesses)	Business Revenues	Loss (Businesses)	Total Loss
1	1	44.803697	11.410193	1.000000	4 684 900.00	4 684 899.78	1.000000	1 316 452.00	1 316 451.62	1.000000	4 684.90	4 684.90	6 006 036.29
2	2	44.804029	11.406235	0.999959	4 991 860.00	4 991 655.56	0.999899	1 900 412.00	1 900 219.37	0.999948	4 991.86	4 991.60	6 896 866.53
3	3	44.803065	11.407821	0.999983	4 118 100.00	4 118 028.81	0.999950	1 300 392.00	1 300 327.55	0.999978	4 118.10	4 118.01	5 422 474.37
4	4	44.802151	11.409012	1.000000	3 973 740.00	3 973 740.00	1.000000	1 837 224.00	1 837 223.99	1.000000	3 973.74	3 973.74	5 814 937.72
5	5	44.800945	11.409346	1.000000	7 738 400.00	7 738 400.00	1.000000	2 936 800.00	2 936 800.00	1.000000	7 738.40	7 738.40	10 682 938.40
6	6	44.800867	11.413629	1.000000	3 533 320.00	3 533 320.00	1.000000	1 234 892.00	1 234 892.00	1.000000	3 533.32	3 533.32	4 771 745.32
7	7	44.800030	11.411432	1.000000	5 508 240.00	5 508 239.93	1.000000	2 603 640.00	2 603 639.60	1.000000	5 508.24	5 508.24	8 117 387.77
8	8	44.802867	11.412465	1.000000	9 184 710.00	9 184 710.00	1.000000	3 821 854.00	3 821 854.00	1.000000	9 184.71	9 184.71	13 015 748.71
9	9	44.802015	11.411098	1.000000	5 127 170.00	5 127 170.00	1.000000	1 967 870.00	1 967 869.99	1.000000	5 127.17	5 127.17	7 100 167.16
10	10	44.804601	11.413063	1.000000	4 855 270.00	4 855 269.94	1.000000	1 354 686.00	1 354 685.86	1.000000	4 855.27	4 855.27	6 214 811.06
11	11	44.805743	11.410076	0.999717	9 353 160.00	9 350 515.12	0.999077	3 803 552.00	3 800 041.73	0.999643	9 353.16	9 349.82	13 159 906.67

4.3.1.2 Ground Liquefaction related Insurance Loss

4.3.1.2.1 Ground Liquefaction related Insurance Loss at Asset Level

Ground Liquefaction-related Risk	Description
Analysis Output Parameters for	
Insurance Loss at Asset level	
Risk Identification	Identification number representing each asset (building or infrastructure)
Geo-Code	Geo-code unit where each asset is assigned to.
LPI	LPI computed at the location of the asset
Differential Settlement (m)	Differential settlement of each asset due to ground liquefaction
LSN	LSN computed at the location of the asset
LSN (ESP)	LSN (ESP) computed at the location of the asset
ESP	ESP computed at the location of the asset
Liquefaction Risk Level (LPI-Based)	LPI-based qualitative estimation of liquefaction risk at the location of each
	asset
Liquefaction Risk Level (LSN-Based)	LSN-based qualitative estimation of liquefaction risk at the location of each
	asset

Probabilities of Damage	Probabilities of Damage computed for each asset. The number of probabilities depends on the type of fragility curves used in risk analysis: if the fragility was with one two three or four Damage Limit States
BUILDING	
Mean Loss Ratio (Building)	Is the mean of building loss ratios of a given number of buildings of same
	Typology located in same Geo-code.
Insured Amount (Building)	Input Data of the insured amount for a given building
Retained Loss (Building)	Retained loss of a given building
Facultative Loss (Building)	Facultative loss of a given building
Coinsurance Loss (Building)	Coinsurance loss of a given building
CEDED Loss (Building)	CECED loss of a given building
CONTENTS	
Mean Loss Ratio (Contents)	Is the mean of content loss ratios of a given number of buildings of same
	Typology located in same Geo-code.
Insured Amount (Contents)	Input Data of the insured amount for contents in a given building
Retained Loss (Contents)	Contents Retained loss of a given building
Facultative Loss (Contents)	Contents Facultative loss of a given building
Coinsurance Loss (Contents)	Contents Coinsurance loss of a given building
CEDED Loss (Building)	Contents CECED loss of a given building
BUSINESS INTERRUPTION	
Mean Loss Ratio (Business	Is the mean of business interruption loss ratios of a given number of
Interruption)	buildings of same Typology located in same Geo-code.
Insured Amount (Business	Input Data of the insured amount for Business Interruption for a given
Interruption)	building
Retained Loss (Business Interruption)	Business Interruption Retained loss of a given building
Facultative Loss (Business	Business Interruption Facultative loss of a given building
Interruption)	
Coinsurance Loss (Business	Business Interruption Coinsurance loss of a given building
Interruption)	
CEDED Loss (Business Interruption)	Business Interruption CECED loss of a given building

When <u>ALL</u> is selected, the displayed results represent all the outcomes of ground liquefaction-related Insurance Loss at Asset Level

mic Gr	ound Shaking	Ground	Liquefacti	ion												
Insur	ance Loss 🔻	Risk Ident	ification	NESS INTERRUPTIC	DN .											
	Longitude	Geo-code	LPI	Differential Settlement (m)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Level (LSN-Based)	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Building)	Insured Amount (Building)	Retained Los (Building)
212	11.408400	11	17.1860	0.1157	15.3130	59.4760	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	5 462.00	0.00
213	11.408800	11	17.9354	0.1388	15.9807	62.0696	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	7 542.00	0.00
214	11.409600	11	10.8115	0.0658	8.1665	43.2614	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	5 462.00	0.00
215	11.407800	11	8.3042	0.0629	7.5603	122.8086	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	3 258.00	0.00
216	11.407100	11	1.0703	0.0205	1.1515	84.2147	WMS	Low	None	0.000224	0.009433	0.097783	0.892560	0.993474	5 658.00	0.00
217	11.407100	11	1.2656	0.0230	1.3616	99.5749	WMS	Low	None	0.000060	0.003682	0.053847	0.942411	0.997478	6 523.00	0.00
218	11.411600	11	13.6450	0.0932	10.3068	54.5994	WLM	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	65 321.00	0.00
219	11.411900	11	10.6313	0.0743	8.0303	42.5402	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	7 542.00	0.00
220	11.412200	11	5.2252	0.0362	2.7130	33.3822	WMS	High	None	0.000000	0.000000	0.000000	1.000000	1.000000	5 462.00	0.00
221	11.412500	11	14.2675	0.1025	12.7475	81.8204	WLS	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	5 658.00	0.00
<																>
																Export

When **<u>BUILDING</u>** is selected, the displayed results represent the ground liquefaction-related Building Insurance Loss at Asset Level

Insuran	ce Loss 🔻	Risk Identifica	tion 🔻													
ALL	BUILDING	CONTENTS	BUSINES	S INTERRUPTION												
de	Longitude	Geo-code	LPI	Differential Settlement (m)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Level (LSN-Based)	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Building)	Insured Amount (Building)	Retained (Buildi
212 300	0 11.408400	11	17.1860	0.1157	15.3130	59.4760	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	5 462.00	0.00
213 300	0 11.408800	11	17.9354	0.1388	15.9807	62.0696	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	7 542.00	0.00
214 100	0 11.409600	11	10.8115	0.0658	8.1665	43.2614	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	5 462.00	0.00
215 500	0 11.407800	11	8.3042	0.0629	7.5603	122.8086	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	3 258.00	0.00
216 400	0 11.407100	11	1.0703	0.0205	1.1515	84.2147	WMS	Low	None	0.000224	0.009433	0.097783	0.892560	0.993474	5 658.00	0.00
217 500	0 11.407100	11	1.2656	0.0230	1.3616	99.5749	WMS	Low	None	0.000060	0.003682	0.053847	0.942411	0.997478	6 523.00	0.00
218 500	0 11.411600	11	13.6450	0.0932	10.3068	54.5994	WLM	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	65 321.00	0.00
219 300	0 11.411900	11	10.6313	0.0743	8.0303	42.5402	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	7 542.00	0.00
220 900	0 11.412200	11	5.2252	0.0362	2.7130	33.3822	WMS	High	None	0.000000	0.000000	0.000000	1.000000	1.000000	5 462.00	0.00
221 00	0 11.412500	11	14.2675	0.1025	12.7475	81.8204	WLS	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	5 658.00	0.00
<																>

When <u>CONTENTS</u> is selected, the displayed results represent the ground liquefaction-related Contents Insurance Loss at Asset Level

nsur	ance Loss 🔻	Risk Ident	ification	•												
ALL	BUILDING	CONTENT	S BUSI	NESS INTERRUPTIC	N			Liquefaction Risk Level	Liquefaction Risk Level	Probability	Probability	Probability	Probability	Mean Loss Ratio	Insured Amount	Retained Los
	Longitude	Geo-code	LPI	Settlement (m)	LSN	LSN (ESP)	ESP	(LPI-Based)	(LSN-Based)	(Slite)	(Moderate)	(Extensive)	(Complete)	(Contents)	(Contents)	(Contents)
212	11.408400	11	17.1860	0.1157	15.3130	59.4760	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	1 092.40	515.10
213	11.408800	11	17.9354	0.1388	15.9807	62.0696	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	1 508.40	713.09
214	11.409600	11	10.8115	0.0658	8.1665	43.2614	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	1 092.40	515.10
215	11.407800	11	8.3042	0.0629	7.5603	122.8086	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	651.60	332.43
216	11.407100	11	1.0703	0.0205	1.1515	84.2147	WMS	Low	None	0.000224	0.009433	0.097783	0.892560	0.980437	1 131.60	588.74
217	11.407100	11	1.2656	0.0230	1.3616	99.5749	WMS	Low	None	0.000060	0.003682	0.053847	0.942411	0.990034	1 304.60	591.26
218	11.411600	11	13.6450	0.0932	10.3068	54.5994	WLM	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	13 064.20	6 033.28
219	11.411900	11	10.6313	0.0743	8.0303	42.5402	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	1 508.40	713.09
220	11.412200	11	5.2252	0.0362	2.7130	33.3822	WMS	High	None	0.000000	0.000000	0.000000	1.000000	1.000000	1 092.40	515.10
221	11.412500	11	14.2675	0.1025	12.7475	81.8204	WLS	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	1 131.60	600.49
c																>

When **<u>BUSINESS INTERRUPTION</u>** is selected, the displayed results represent the ground liquefactionrelated Business Interruption Insurance Loss at Asset Level

insur	ance Loss 🔻	Risk Ident	ification	•												
ALL	BUILDING	CONTENT	S BUSI	NESS INTERRUPTIO	N											
	Longitude	Geo-code	LPI	Differential Settlement (m)	LSN	LSN (ESP)	ESP	Liquefaction Risk Level (LPI-Based)	Liquefaction Risk Level (LSN-Based)	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Interruption)	Insured Amount (Interruption)	Retained Los ' (Interruptior
12	11.408400	11	17.1860	0.1157	15.3130	59.4760	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	273.10	44.92
13	11.408800	11	17.9354	0.1388	15.9807	62.0696	WLS	Very High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	377.10	63.12
14	11.409600	11	10.8115	0.0658	8.1665	43.2614	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	273.10	44.92
15	11.407800	11	8.3042	0.0629	7.5603	122.8086	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	162.90	26.65
16	11.407100	11	1.0703	0.0205	1.1515	84.2147	WMS	Low	None	0.000224	0.009433	0.097783	0.892560	0.991758	282.90	49.61
17	11.407100	11	1.2656	0.0230	1.3616	99.5749	WMS	Low	None	0.000060	0.003682	0.053847	0.942411	0.996810	326.15	57.48
18	11.411600	11	13.6450	0.0932	10.3068	54.5994	WLM	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	3 266.05	577.45
19	11.411900	11	10.6313	0.0743	8.0303	42.5402	WLS	High	Low	0.000000	0.000000	0.000000	1.000000	1.000000	377.10	63.12
20	11.412200	11	5.2252	0.0362	2.7130	33.3822	WMS	High	None	0.000000	0.000000	0.000000	1.000000	1.000000	273.10	44.92
21	11.412500	11	14.2675	0.1025	12.7475	81.8204	WLS	High	Moderate	0.000000	0.000000	0.000000	1.000000	1.000000	282.90	50.02
:																>

4.3.1.2.2 Ground Liquefaction related Insurance Loss at Geo-code Level

Ground Liquefaction-	Description
related Risk Analysis	
Output Parameters for	
Insurance Loss at Geo-code	
level	
Mean Loss Ratio (Buildings)	Is the mean of loss ratios of all buildings located in a given Geo-code.
Insured Amount (Buildings)	Total insured amount for all buildings located in a given Geo-code.
Retained Loss (Buildings)	Total retained Loss considering all buildings located in a given Geo-code.
Facultative Loss (Buildings)	Total facultative Loss considering all buildings located in a given Geo-code.
Coinsurance Loss	Total coinsurance Loss considering all buildings located in a given Geo-code.
(Buildings)	
CECED Loss (Buildings)	Total CECED Loss considering all buildings located in a given Geo-code.
Insured Amount (Contents)	Total insured amount for all contents of buildings located in a given Geo-code.
Retained Loss (Contents)	Total retained Loss considering all contents of buildings located in a given Geo-code.
Facultative Loss (Contents)	Total facultative Loss considering all contents of buildings located in a given Geo-
	code.
Coinsurance Loss	Total coinsurance Loss considering all contents of buildings located in a given Geo-
(Contents)	code.
CECED Loss (Contents)	Total CECED Loss considering all contents of buildings located in a given Geo-code.
Insured Amount (Business	Total insured amount for all businesses of buildings located in a given Geo-code.
Interruption)	
Retained Loss (Business	Total retained Loss considering all businesses of buildings located in a given Geo-
Interruption)	code.
Facultative Loss (Business	Total facultative Loss considering all businesses of buildings located in a given Geo-
Interruption)	code.
Coinsurance Loss (Business	Total coinsurance Loss considering all businesses of buildings located in a given Geo-
Interruption)	code.

CECED Loss (Business	Total CECED Loss considering all businesses of buildings located in a given Geo-code.
Interruption)	
Total Loss	Total insurance loss in a given Geo-code

IUPC	rance Loss	 Geo-co 	de 🔹	•											
	^ Geo-code	Latitude	Longitude	Mean Loss Ratio (Buildings)	Insured Amount (Buildings)	Retained Loss (Buildings)	Facultative Loss (Buildings)	Coinsurance Loss (Buildings)	CEDED Loss (Buildings)	Mean Loss Ratio (Contents)	Insured Amount (Contents)	Retained Loss (Contents)	Facultative Loss (Contents)	Coinsurance Loss (Contents)	CEDE (Con
1	1	44.803697	11.410193	1.000000	155 526.00	0.00	3 452.68	0.00	152 073.32	1.000000	7 776.30	3 309.26	1 284.40	0.00	3 18
2	2	44.804029	11.406235	0.999959	213 922.00	0.00	4 748.87	0.00	209 164.37	0.999899	10 696.10	5 082.74	1 725.10	0.00	3 88
3	3	44.803065	11.407821	0.999983	150 484.00	0.00	3 340.69	0.00	147 140.71	0.999950	7 524.20	3 343.74	1 218.71	0.00	2 96
4	4	44.802151	11.409012	1.000000	195 068.00	0.00	4 330.51	0.00	190 737.49	1.000000	9 753.40	4 549.78	1 543.93	0.00	3 65
5	5	44.800945	11.409346	1.000000	340 252.00	0.00	7 553.59	0.00	332 698.41	1.000000	17 012.60	7 815.20	2 744.66	0.00	6 45
6	6	44.800867	11.413629	1.000000	143 574.00	0.00	3 187.34	0.00	140 386.66	1.000000	7 178.70	3 334.29	1 148.92	0.00	2 69
7	7	44.800030	11.411432	1.000000	281 292.00	0.00	6 244.68	0.00	275 047.32	1.000000	14 064.60	6 808.92	2 227.59	0.00	5 02
8	8	44.802867	11.412465	1.000000	421 435.00	0.00	9 355.85	0.00	412 079.15	1.000000	21 071.75	10 018.46	3 379.03	0.00	7 67
9	9	44.802015	11.411098	1.000000	224 691.00	0.00	4 988.14	0.00	219 702.86	1.000000	11 234.55	5 460.00	1 791.76	0.00	3 98
10	10	44.804601	11.413063	1.000000	163 719.00	0.00	3 634.56	0.00	160 084.44	1.000000	8 185.95	3 619.53	1 334.91	0.00	3 23
11	11	44.805743	11.410076	0.999717	424 804.00	0.00	9 427.98	0.00	415 255.90	0.999077	21 240.20	10 496.17	3 394.44	0.00	7 32
••• <		44.003743	11.410070	0.555717	424 004.00	0.00	5 427.50	0.00	415 255.50	0.555011	21 240.20	10 450.17	3 334,44	0.00	

4.3.2 Ground Shaking-related Risk Analysis Output

Risk due to ground shaking only is computed at individual asset (Risk Identification) as well as at Geocode level.

4.3.2.1 Ground Shaking related Owner Loss

4.3.2.1.1 Ground Shaking related Owner Loss at Asset Level

Ground Shaking-related Risk Analysis Output Parameters for Owner Loss at Asset level	Description
Risk Identification	Identification number representing each asset (building or infrastructure)
Geo-Code	Geo-code unit where each asset is assigned to.
Probabilities of Damage	Probabilities of Damage computed for each asset. The number of probabilities depends on the type of fragility curves used in risk analysis: if the fragility was with one, two, three or four Damage Limit States
BUILDING	
Mean Loss Ratio (Building)	Is the mean of building loss ratios of a given number of buildings of same Typology located in same Geo-code.
Monetary Values (Building)	Input Data of monetary value of a given building
Loss (Building)	Is computed as Monetary value (Building) multiplied with the Mean Loss Ratio (Building).

CONTENTS	
Mean Loss Ratio (Contents)	Is the mean of content loss ratios of a given number of buildings of same
	Typology located in same Geo-code.
Monetary Values (Contents)	Input Data of monetary value of a given content in a given building
Loss (Contents)	Is computed as Monetary value (Contents) multiplied with the Mean Loss Ratio
	(Contents).
BUSINESS INTERRUPTION	
Mean Loss Ratio (Business	Is the mean of content loss ratios of a given number of buildings of same
Interruption)	Typology located in same Geo-code.
Business Revenue	Input Data of business revenue of a given building
Loss (Business Interruption)	Is computed as Business revenue multiplied with the Mean Loss Ratio (Business
	Interruption).

When <u>ALL</u> is selected, the displayed results represent all the outcomes of ground shaking-related Owner Loss at Asset Level

0	Gro	und Liquerac	tion											
ALL	BUILDING CONT	ENTS BUS	SINESS INTER	RUPTION										
	A Risk Identification	Latitude	Longitude	Geo-code	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Building)	Monetary Values (Building)	Loss (Building)	Mean Loss Ratio (Contents)	Monetary Values (Contents)	^ (Co
1	B001	44.804900	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.182276	282 900.00	51 565.87	0.220547	56 580.00	12
2	B002	44.804600	11.406200	2	0.169035	0.095148	0.000000	0.149434	0.182276	326 150.00	59 449.30	0.220547	65 230.00	14
3	B003	44.804700	11.407100	2	0.169035	0.095148	0.000000	0.149434	0.182276	653 210.00	119 064.47	0.220547	653 210.00	144
4	B004	44.804300	11.407700	2	0.169035	0.095148	0.000000	0.149434	0.182276	301 680.00	54 989.01	0.220547	75 420.00	16
5	B005	44.804500	11.407400	2	0.169035	0.095148	0.000000	0.149434	0.182276	109 240.00	19 911.82	0.220547	10 924.00	24
6	B006	44.804100	11.407300	2	0.169035	0.095148	0.000000	0.149434	0.182276	162 900.00	29 692.75	0.220547	6 516.00	12
7	B007	44.804300	11.406000	2	0.169035	0.095148	0.000000	0.149434	0.182276	282 900.00	51 565.87	0.220547	56 580.00	12
8	B008	44.804100	11.405800	2	0.169035	0.095148	0.000000	0.149434	0.182276	326 150.00	59 449.30	0.220547	65 230.00	14
9	B009	44.804200	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.182276	653 210.00	119 064.47	0.220547	653 210.00	144
10	B010	44.804000	11.406500	2	0.169035	0.095148	0.000000	0.149434	0.182276	301 680.00	54 989.01	0.220547	75 420.00	16
<														>
													Exp	ort

When <u>**BUILDING</u>** is selected, the displayed results represent the ground shaking-related Building Owner Loss at Asset Level</u>

ra Anai smic Gr	round Shaking Gro	und Liquefac	tion	tion Analysis	Output							
Owne	er Loss 🔻 Risk I	dentification	•									
ALL	BUILDING CONT	ENTS BUS	EINESS INTER	RUPTION Geo-code	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Building)	Monetary Values (Building)	Loss (Building)	^
1	B001	44.804900	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.182276	282 900.00	51 565.87	
2	B002	44.804600	11.406200	2	0.169035	0.095148	0.000000	0.149434	0.182276	326 150.00	59 449.30	
3	B003	44.804700	11.407100	2	0.169035	0.095148	0.000000	0.149434	0.182276	653 210.00	119 064.47	
4	B004	44.804300	11.407700	2	0.169035	0.095148	0.000000	0.149434	0.182276	301 680.00	54 989.01	
5	B005	44.804500	11.407400	2	0.169035	0.095148	0.000000	0.149434	0.182276	109 240.00	19 911.82	
6	B006	44.804100	11.407300	2	0.169035	0.095148	0.000000	0.149434	0.182276	162 900.00	29 692.75	
7	B007	44.804300	11.406000	2	0.169035	0.095148	0.000000	0.149434	0.182276	282 900.00	51 565.87	
8	B008	44.804100	11.405800	2	0.169035	0.095148	0.000000	0.149434	0.182276	326 150.00	59 449.30	
9	B009	44.804200	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.182276	653 210.00	119 064.47	
10	B010	44.804000	11.406500	2	0.169035	0.095148	0.000000	0.149434	0.182276	301 680.00	54 989.01	
11	B011	44.803800	11.406400	2	0.169035	0.095148	0.000000	0.149434	0.182276	109 240.00	19 911.82	~
											Export	

When <u>CONTENTS</u> is selected, the displayed results represent the ground shaking-related Contents Owner Loss at Asset Level

ound Shaking Grou	und Liquefac	tion									
r Loss 🔹 🔻 Risk Id	dentification	-									
BUILDING	ENTS BUS	SINESS INTER	RUPTION								
^ Risk Identification	Latitude	Longitude	Geo-code	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Contents)	Monetary Values (Contents)	Loss (Contents)	^
B001	44.804900	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.220547	56 580.00	12 478.57	
B002	44.804600	11.406200	2	0.169035	0.095148	0.000000	0.149434	0.220547	65 230.00	14 386.30	
B003	44.804700	11.407100	2	0.169035	0.095148	0.000000	0.149434	0.220547	653 210.00	144 063.69	
B004	44.804300	11.407700	2	0.169035	0.095148	0.000000	0.149434	0.220547	75 420.00	16 633.68	
B005	44.804500	11.407400	2	0.169035	0.095148	0.000000	0.149434	0.220547	10 924.00	2 409.26	
B006	44.804100	11.407300	2	0.169035	0.095148	0.000000	0.149434	0.220547	6 516.00	1 437.09	
B007	44.804300	11.406000	2	0.169035	0.095148	0.000000	0.149434	0.220547	56 580.00	12 478.57	
B008	44.804100	11.405800	2	0.169035	0.095148	0.000000	0.149434	0.220547	65 230.00	14 386.30	
B009	44.804200	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.220547	653 210.00	144 063.69	
B010	44.804000	11.406500	2	0.169035	0.095148	0.000000	0.149434	0.220547	75 420.00	16 633.68	
B011	44.803800	11.406400	2	0.169035	0.095148	0.000000	0.149434	0.220547	10 924.00	2 409.26	~
	r Loss ▼ Risk Id BUILDING CONT Risk Identification B001 B002 B003 B004 B005 B005 B006 B007 B008 B009 B010 B011	Identification Latitude BUILDING CONTENTS BUS Risk Identification Latitude B001 44.804900 B002 44.804600 B003 44.804700 B005 44.804300 B005 44.804300 B006 44.804300 B007 44.804300 B008 44.804300 B009 44.804300 B009 44.804200 B010 44.804200	Image: Control Silesting Ground Liqueraction Risk Identification ▼ BUILDING CONTENTS BUSINESS INTER Risk Identification Latitude Longitude B001 44.804900 11.406700 B002 44.804600 11.406200 B003 44.804700 11.407100 B004 44.804300 11.407700 B005 44.804300 11.40700 B006 44.804300 11.40700 B006 44.804300 11.406000 B007 44.804300 11.406000 B008 44.804300 11.406700 B009 44.804300 11.406700 B009 44.804300 11.406700 B009 44.804200 11.406700 B010 44.804200 11.406500	Image: Control Silesting Ground Eliqueraction BUILDING CONTENTS BUSINESS INTERRUPTION Risk Identification Latitude Longitude Geo-code B001 44.804900 11.406700 2 B002 44.804600 11.406200 2 B003 44.804700 11.407100 2 B004 44.804300 11.407700 2 B005 44.804300 11.407700 2 B006 44.804300 11.407700 2 B005 44.804300 11.40700 2 B006 44.804300 11.406000 2 B007 44.804300 11.406000 2 B008 44.804200 11.406700 2 B009 44.804200 11.406700 2 B009 44.804200 11.406700 2 B010 44.804200 11.406500 2 B011 44.803800 11.406400 2	Noric Strikting Ground Liqueraction r Loss Risk Identification BUILDING CONTENTS BUSINESS INTERRUPTION Risk Identification Latitude Longitude Geo-code Probability (Slite) B001 44.804900 11.406700 2 0.169035 B002 44.804600 11.406700 2 0.169035 B003 44.804700 11.407100 2 0.169035 B004 44.804300 11.407700 2 0.169035 B005 44.804300 11.407700 2 0.169035 B006 44.804300 11.407700 2 0.169035 B006 44.804300 11.407700 2 0.169035 B006 44.804300 11.407300 2 0.169035 B007 44.804300 11.406000 2 0.169035 B008 44.804300 11.406700 2 0.169035 B009 44.804200 11.406700 2 0.169035 B0010 44.804200	Noric Shiking Ground Equetaction FLoss Risk Identification BUILDING CONTENTS BUSINESS INTERRUPTION Risk Identification Latitude Longitude Geo-code Probability (Slite) Probability (Moderate) B001 44.804900 11.406700 2 0.169035 0.095148 B002 44.804600 11.406700 2 0.169035 0.095148 B003 44.804700 11.407700 2 0.169035 0.095148 B004 44.804300 11.407700 2 0.169035 0.095148 B005 44.804300 11.407700 2 0.169035 0.095148 B006 44.804300 11.407700 2 0.169035 0.095148 B006 44.804300 11.406700 2 0.169035 0.095148 B007 44.804300 11.406700 2 0.169035 0.095148 B008 44.804200 11.406700 2 0.169035 0.095148 B009 44.804200	Noric Shinking Ground Experience FLOSS Risk Identification BUILDING CONTENTS BUSINESS INTERCUPTION Risk Identification Latitude Longitude Geo-code Probability (Slite) Probability (Moderate) Probability (Extensive) B001 44.804900 11.406700 2 0.169035 0.095148 0.000000 B002 44.804000 11.406700 2 0.169035 0.095148 0.000000 B003 44.80400 11.407700 2 0.169035 0.095148 0.000000 B004 44.804300 11.407700 2 0.169035 0.095148 0.000000 B005 44.804300 11.407700 2 0.169035 0.095148 0.000000 B006 44.804300 11.407700 2 0.169035 0.095148 0.000000 B007 44.804300 11.406700 2 0.169035 0.095148 0.000000 B008 44.804300 11.406700 2 0.169035 0.095148 0.000	No. of Shearing Ground Liquefaction PLOSS Risk Identification BUILDING CONTENTS BUSINESS INTERRUPTION Risk Identification Latitude Longitude Geo-code Probability (Slite) Probability (Moderate) Probability (Extensive) Probability (Complete) B001 44.804000 11.406700 2 0.169035 0.095148 0.000000 0.149434 B002 44.804000 11.407100 2 0.169035 0.095148 0.000000 0.149434 B003 44.804300 11.407100 2 0.169035 0.095148 0.000000 0.149434 B004 44.804300 11.407100 2 0.169035 0.095148 0.000000 0.149434 B005 44.804300 11.407700 2 0.169035 0.095148 0.000000 0.149434 B006 44.804300 11.407700 2 0.169035 0.095148 0.000000 0.149434 B006 44.804300 11.406700 2 0.169035 0.095148 <	CONTRO STIRATING CHOUND Eliquefaction FLOSS Risk Identification BUILDING CONTENTS BUSINESS INTERRUPTION Auge Latitude Longitude Geo-code Probability (Silte) Probability (Moderate) Probability (Extensive) Probability (Complete) Mean Loss Ratio (Contents) B001 44.80400 11.406700 2 0.169035 0.095148 0.000000 0.149434 0.220547 B002 44.80400 11.406700 2 0.169035 0.095148 0.000000 0.149434 0.220547 B003 44.80400 11.407700 2 0.169035 0.095148 0.000000 0.149434 0.220547 B003 44.804300 11.407700 2 0.169035 0.095148 0.000000 0.149434 0.220547 B005 44.804300 11.407700 2 0.169035 0.095148 0.000000 0.149434 0.220547 B006 44.804300 11.407400 2 0.169035 0.095148 0.000000 0.149434 0.220	Risk Identification Latitude Longitude Geo-code Probability (Site) Probability (Moderate) Probability (Extensive) Probability (Complete) Mean Loss Ratio (Contents) Monetary Values (Contents) B001 44.80400 11.406700 2 0.169035 0.095148 0.000000 0.149434 0.220547 655 230.00 B002 44.80400 11.407100 2 0.169035 0.095148 0.000000 0.149434 0.220547 653 210.00 B003 44.80400 11.407100 2 0.169035 0.095148 0.000000 0.149434 0.220547 653 210.00 B004 44.80400 11.407100 2 0.169035 0.095148 0.000000 0.149434 0.220547 75 420.00 B005 44.80400 11.407300 2 0.169035 0.095148 0.000000 0.149434 0.220547 6 516.00	Risk Identification Loss Risk Identification Loss Monetary Values Loss Contents Monetary Values Loss Contents Conten

When **<u>BUSINESS INTERRUPTION</u>** is selected, the displayed results represent the ground shakingrelated Business Interruption Owner Loss at Asset Level

imic G	round Shaking Gro	und Liquefac	tion									
Own	er Loss 🔹 🔻 Risk I	dentification	•									
ALL	BUILDING CONT	ENTS BUS	SINESS INTER	RUPTION								
	^ Risk Identification	Latitude	Longitude	Geo-code	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Interruption)	Business Revenue	Loss (Interruption)	^
1	B001	44.804900	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.151626	282.90	42.90	
2	B002	44.804600	11.406200	2	0.169035	0.095148	0.000000	0.149434	0.151626	326.15	49.45	
3	B003	44.804700	11.407100	2	0.169035	0.095148	0.000000	0.149434	0.151626	653.21	99.04	
4	B004	44.804300	11.407700	2	0.169035	0.095148	0.000000	0.149434	0.151626	301.68	45.74	
5	B005	44.804500	11.407400	2	0.169035	0.095148	0.000000	0.149434	0.151626	109.24	16.56	
6	B006	44.804100	11.407300	2	0.169035	0.095148	0.000000	0.149434	0.151626	162.90	24.70	
7	B007	44.804300	11.406000	2	0.169035	0.095148	0.000000	0.149434	0.151626	282.90	42.90	
8	B008	44.804100	11.405800	2	0.169035	0.095148	0.000000	0.149434	0.151626	326.15	49.45	
9	B009	44.804200	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.151626	653.21	99.04	
10	B010	44.804000	11.406500	2	0.169035	0.095148	0.000000	0.149434	0.151626	301.68	45.74	
11	B011	44.803800	11.406400	2	0.169035	0.095148	0.000000	0.149434	0.151626	109.24	16.56	
											Export.	

4.3.2.1.2 Ground Shaking related Owner Loss at Geo-code Level

Ground Shaking-related Risk	Description
Analysis Output Parameters for	
Owner Loss at Geo-code level	
Mean Loss Ratio (Buildings)	Is the mean of loss ratios of all buildings located in a given Geo-code.
Monetary Values (Buildings)	Input Data of total monetary values of all buildings located in a given Geo-
	code.
Loss (Buildings)	Is computed as Total Monetary value (Buildings) multiplied with the Mean
	Loss Ratio (Buildings), in a given Geo-code.
Mean Loss Ratio (Contents)	Is the mean of loss ratios of all Contents located in a given Geo-code.
Monetary Values (Contents)	Input Data of total monetary values of all Contents located in a given Geo-
	code.
Loss (Contents)	Is computed as Total Monetary value (Contents) multiplied with the Mean
	Loss Ratio (Contents), in a given Geo-code.
Mean Loss Ratio (Businesses)	Is the mean of loss ratios of all Businesses located in a given Geo-code.
Monetary Values (Businesses)	Input Data of total monetary values of all Businesses located in a given Geo-
	code.
Loss (Businesses)	Is computed as Total Monetary value (Businesses) multiplied with the Mean
	Loss Ratio (Businesses), in a given Geo-code.
Total Loss	Total loss in a given Geo-code

Owr	ner Loss	▼ Geo-co	de	•									
	Geo-code	Latitude	Longitude	Mean Loss Ratio (Buildings)	Monetary Values (Buildings)	Loss (Buildings)	Mean Loss Ratio (Contents)	Monetary Values (Contents)	Loss (Contents)	Mean Loss Ratio (Businesses)	Business Revenues	Loss (Businesses)	Total Loss
1	1	44.803697	11.410193	0.199461	4 684 900.00	934 456.27	0.242770	1 316 452.00	319 595.63	0.162139	4 684.90	759.60	1 254 811.5
2	2	44.804029	11.406235	0.182276	4 991 860.00	909 896.02	0.220547	1 900 412.00	419 130.71	0.151626	4 991.86	756.90	1 329 783.63
3	3	44.803065	11.407821	0.182276	4 118 100.00	750 630.59	0.220547	1 300 392.00	286 797.93	0.151626	4 118.10	624.41	1 038 052.9
4	4	44.802151	11.409012	0.261903	3 973 740.00	1 040 734.35	0.293134	1 837 224.00	538 553.23	0.222769	3 973.74	885.23	1 580 172.8
5	5	44.800945	11.409346	0.280892	7 738 400.00	2 173 653.07	0.337438	2 936 800.00	990 987.99	0.219803	7 738.40	1 700.92	3 166 341.9
6	6	44.800867	11.413629	0.300031	3 533 320.00	1 060 105.01	0.386658	1 234 892.00	477 481.13	0.213750	3 533.32	755.25	1 538 341.38
7	7	44.800030	11.411432	0.237987	5 508 240.00	1 310 888.58	0.279949	2 603 640.00	728 885.65	0.197909	5 508.24	1 090.13	2 040 864.3
8	8	44.802867	11.412465	0.219327	9 184 710.00	2 014 456.31	0.259637	3 821 854.00	992 294.54	0.181444	9 184.71	1 666.51	3 008 417.3
9	9	44.802015	11.411098	0.211810	5 127 170.00	1 085 987.91	0.258220	1 967 870.00	508 143.16	0.170871	5 127.17	876.09	1 595 007.15
10	10	44.804601	11.413063	0.210145	4 855 270.00	1 020 312.71	0.245953	1 354 686.00	333 188.70	0.176526	4 855.27	857.08	1 354 358.49
11	11	44.805743	11.410076	0.290660	9 353 160.00	2 718 590.23	0.360229	3 803 552.00	1 370 149.44	0.218277	9 353.16	2 041.58	4 090 781.2

4.3.2.2 Ground Shaking related Insurance Loss

4.3.2.2.1 Ground Shaking related Insurance Loss at Asset Level

Ground Shaking-related Risk Analysis	Description
Output Parameters for Insurance Loss	
at Asset level	
Risk Identification	Identification number representing each asset (building or infrastructure)
Geo-Code	Geo-code unit where each asset is assigned to.
Probabilities of Damage	Probabilities of Damage computed for each asset. The number of
	probabilities depends on the type of fragility curves used in risk analysis: if
	the fragility was with one, two, three or four Damage Limit States
BUILDING	
Mean Loss Ratio (Building)	Is the mean of building loss ratios of a given number of buildings of same
	Typology located in same Geo-code.
Insured Amount (Building)	Input Data of the insured amount for a given building
Retained Loss (Building)	Retained loss of a given building
Facultative Loss (Building)	Facultative loss of a given building
Coinsurance Loss (Building)	Coinsurance loss of a given building
CEDED Loss (Building)	CECED loss of a given building
CONTENTS	
Mean Loss Ratio (Contents)	Is the mean of content loss ratios of a given number of buildings of same
	Typology located in same Geo-code.
Insured Amount (Contents)	Input Data of the insured amount for contents in a given building
Retained Loss (Contents)	Contents Retained loss of a given building
Facultative Loss (Contents)	Contents Facultative loss of a given building

Coinsurance Loss (Contents)	Contents Coinsurance loss of a given building
CEDED Loss (Building)	Contents CECED loss of a given building
BUSINESS INTERRUPTION	
Mean Loss Ratio (Business	Is the mean of business interruption loss ratios of a given number of
Interruption)	buildings of same Typology located in same Geo-code.
Insured Amount (Business	Input Data of the insured amount for Business Interruption for a given
Interruption)	building
Retained Loss (Business Interruption)	Business Interruption Retained loss of a given building
Facultative Loss (Business	Business Interruption Facultative loss of a given building
Interruption)	
Coinsurance Loss (Business	Business Interruption Coinsurance loss of a given building
Interruption)	
CEDED Loss (Business Interruption)	Business Interruption CECED loss of a given building

When <u>ALL</u> is selected, the displayed results represent all the outcomes of ground shaking-related Insurance Loss at Asset Level

Insur	ance Loss 🔻 Risk Id	dentification	•												
ALL	BUILDING CONT	ENTS BUS	SINESS INTER	RUPTION											
	A Risk Identification	Latitude	Longitude	Geo-code	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Building)	Insured Amount (Building)	Retained Loss (Building)	Facultative Loss (Building)	Coinsurance Loss (Building)	CEDED Loss (Building)	Mear (C
1	B001	44.804900	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.182276	5 658.00	0.00	22.90	0.00	1 008.42	0.220!
2	B002	44.804600	11.406200	2	0.169035	0.095148	0.000000	0.149434	0.182276	6 523.00	0.00	26.40	0.00	1 162.59	0.2205
3	B003	44.804700	11.407100	2	0.169035	0.095148	0.000000	0.149434	0.182276	65 321.00	0.00	264.32	0.00	11 642.12	0.2205
4	B004	44.804300	11.407700	2	0.169035	0.095148	0.000000	0.149434	0.182276	7 542.00	0.00	30.52	0.00	1 344.21	0.220!
5	B005	44.804500	11.407400	2	0.169035	0.095148	0.000000	0.149434	0.182276	5 462.00	0.00	22.10	0.00	973.49	0.220!
6	B006	44.804100	11.407300	2	0.169035	0.095148	0.000000	0.149434	0.182276	3 258.00	0.00	13.18	0.00	580.67	0.2205
7	B007	44.804300	11.406000	2	0.169035	0.095148	0.000000	0.149434	0.182276	5 658.00	0.00	22.90	0.00	1 008.42	0.2205
8	B008	44.804100	11.405800	2	0.169035	0.095148	0.000000	0.149434	0.182276	6 523.00	0.00	26.40	0.00	1 162.59	0.2205
9	B009	44.804200	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.182276	65 321.00	0.00	264.32	0.00	11 642.12	0.2205
10	B010	44.804000	11.406500	2	0.169035	0.095148	0.000000	0.149434	0.182276	7 542.00	0.00	30.52	0.00	1 344.21	0.2205
<															>

When <u>**BUILDING</u>** is selected, the displayed results represent the ground shaking-related Building Insurance Loss at Asset Level</u>

insur	ance Loss 🔻 Risk I	dentification	•												
ALL	BUILDING CONT	ENTS BUS	INESS INTER	RUPTION											
	Risk Identification	Latitude	Longitude	Geo-code	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Building)	Insured Amount (Building)	Retained Loss (Building)	Facultative Loss (Building)	Coinsurance Loss (Building)	CEDED Loss (Building)	
	B001	44.804900	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.182276	5 658.00	0.00	22.90	0.00	1 008.42	
	B002	44.804600	11.406200	2	0.169035	0.095148	0.000000	0.149434	0.182276	6 523.00	0.00	26.40	0.00	1 162.59	
	B003	44.804700	11.407100	2	0.169035	0.095148	0.000000	0.149434	0.182276	65 321.00	0.00	264.32	0.00	11 642.12	
	B004	44.804300	11.407700	2	0.169035	0.095148	0.000000	0.149434	0.182276	7 542.00	0.00	30.52	0.00	1 344.21	
	B005	44.804500	11.407400	2	0.169035	0.095148	0.000000	0.149434	0.182276	5 462.00	0.00	22.10	0.00	973.49	
;	B006	44.804100	11.407300	2	0.169035	0.095148	0.000000	0.149434	0.182276	3 258.00	0.00	13.18	0.00	580.67	
,	B007	44.804300	11.406000	2	0.169035	0.095148	0.000000	0.149434	0.182276	5 658.00	0.00	22.90	0.00	1 008.42	
	B008	44.804100	11.405800	2	0.169035	0.095148	0.000000	0.149434	0.182276	6 523.00	0.00	26.40	0.00	1 162.59	
	B009	44.804200	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.182276	65 321.00	0.00	264.32	0.00	11 642.12	
0	B010	44.804000	11.406500	2	0.169035	0.095148	0.000000	0.149434	0.182276	7 542.00	0.00	30.52	0.00	1 344.21	
1	B011	44.803800	11.406400	2	0.169035	0.095148	0.000000	0.149434	0.182276	5 462.00	0.00	22.10	0.00	973.49	

When <u>CONTENTS</u> is selected, the displayed results represent the ground shaking-related Contents Insurance Loss at Asset Level

Insur	ance Loss 🔻 Risk Id	dentification	•												
ALL	BUILDING	ENTS BUS	SINESS INTER	RUPTION											
	A Risk Identification	Latitude	Longitude	Geo-code	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Contents)	Insured Amount (Contents)	Retained Loss (Contents)	Facultative Loss (Contents)	Coinsurance Loss (Contents)	CEDED Loss (Contents)	
1	B001	44.804900	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.220547	1 131.60	132.44	38.40	0.00	78.74	
2	B002	44.804600	11.406200	2	0.169035	0.095148	0.000000	0.149434	0.220547	1 304.60	131.71	44.27	0.00	111.75	
3	B003	44.804700	11.407100	2	0.169035	0.095148	0.000000	0.149434	0.220547	13 064.20	1 330.62	443.27	0.00	1 107.38	
4	B004	44.804300	11.407700	2	0.169035	0.095148	0.000000	0.149434	0.220547	1 508.40	157.27	51.75	0.00	123.65	
5	B005	44.804500	11.407400	2	0.169035	0.095148	0.000000	0.149434	0.220547	1 092.40	113.60	40.14	0.00	87.18	
6	B006	44.804100	11.407300	2	0.169035	0.095148	0.000000	0.149434	0.220547	651.60	73.32	23.94	0.00	46.45	
7	B007	44.804300	11.406000	2	0.169035	0.095148	0.000000	0.149434	0.220547	1 131.60	132.44	38.40	0.00	78.74	
8	B008	44.804100	11.405800	2	0.169035	0.095148	0.000000	0.149434	0.220547	1 304.60	131.71	44.27	0.00	111.75	
9	B009	44.804200	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.220547	13 064.20	1 330.62	443.27	0.00	1 107.38	
10	B010	44.804000	11.406500	2	0.169035	0.095148	0.000000	0.149434	0.220547	1 508.40	157.27	51.75	0.00	123.65	
11	B011	44.803800	11.406400	2	0.169035	0.095148	0.000000	0.149434	0.220547	1 092.40	113.60	40.14	0.00	87.18	
														Ex	port

When **<u>BUSINESS INTERRUPTION</u>** is selected, the displayed results represent the ground shakingrelated Business Interruption Insurance Loss at Asset Level

Insur	ance Loss 🔻 Risk I	dentification	•												
ALL	BUILDING CONT	ENTS BU	SINESS INTER	RUPTION											
	^ Risk Identification	Latitude	Longitude	Geo-code	Probability (Slite)	Probability (Moderate)	Probability (Extensive)	Probability (Complete)	Mean Loss Ratio (Interruption)	Insured Amount (Interruption)	Retained Loss (Interruption)	Facultative Loss (Interruption)	Coinsurance Loss (Interruption)	CEDED Loss (Interruption)	
1	B001	44.804900	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.151626	282.90	7.58	0.00	0.00	35.31	
2	B002	44.804600	11.406200	2	0.169035	0.095148	0.000000	0.149434	0.151626	326.15	8.74	0.00	0.00	40.71	
3	B003	44.804700	11.407100	2	0.169035	0.095148	0.000000	0.149434	0.151626	3 266.05	87.56	0.00	0.00	407.66	
1	B004	44.804300	11.407700	2	0.169035	0.095148	0.000000	0.149434	0.151626	377.10	9.57	0.00	0.00	47.61	
5	B005	44.804500	11.407400	2	0.169035	0.095148	0.000000	0.149434	0.151626	273.10	6.81	0.00	0.00	34.60	
5	B006	44.804100	11.407300	2	0.169035	0.095148	0.000000	0.149434	0.151626	162.90	4.04	0.00	0.00	20.66	
7	B007	44.804300	11.406000	2	0.169035	0.095148	0.000000	0.149434	0.151626	282.90	7.58	0.00	0.00	35.31	
з	B008	44.804100	11.405800	2	0.169035	0.095148	0.000000	0.149434	0.151626	326.15	8.74	0.00	0.00	40.71	
)	B009	44.804200	11.406700	2	0.169035	0.095148	0.000000	0.149434	0.151626	3 266.05	87.56	0.00	0.00	407.66	
10	B010	44.804000	11.406500	2	0.169035	0.095148	0.000000	0.149434	0.151626	377.10	9.57	0.00	0.00	47.61	
11	B011	44.803800	11.406400	2	0.169035	0.095148	0.000000	0.149434	0.151626	273.10	6.81	0.00	0.00	34.60	

4.3.2.2.2 Ground Shaking related Insurance Loss at Geo-code Level

Consumed Charlein on an Instand	Description
Grouna Snaking-relatea	Description
Risk Analysis Output	
Parameters for Insurance	
Loss at Geo-code level	
Mean Loss Ratio (Buildings)	Is the mean of loss ratios of all buildings located in a given Geo-code.
Insured Amount (Buildings)	Total insured amount for all buildings located in a given Geo-code.
Retained Loss (Buildings)	Total retained Loss considering all buildings located in a given Geo-code.
Facultative Loss (Buildings)	Total facultative Loss considering all buildings located in a given Geo-code.
Coinsurance Loss	Total coinsurance Loss considering all buildings located in a given Geo-code.
(Buildings)	
CECED Loss (Buildings)	Total CECED Loss considering all buildings located in a given Geo-code.
Insured Amount (Contents)	Total insured amount for all contents of buildings located in a given Geo-code.
Retained Loss (Contents)	Total retained Loss considering all contents of buildings located in a given Geo-code.
Facultative Loss (Contents)	Total facultative Loss considering all contents of buildings located in a given Geo-
	code.
Coinsurance Loss	Total coinsurance Loss considering all contents of buildings located in a given Geo-
(Contents)	code.
CECED Loss (Contents)	Total CECED Loss considering all contents of buildings located in a given Geo-code.
Insured Amount (Business	Total insured amount for all businesses of buildings located in a given Geo-code.
Interruption)	
Retained Loss (Business	Total retained Loss considering all businesses of buildings located in a given Geo-
Interruption)	code.
Facultative Loss (Business	Total facultative Loss considering all businesses of buildings located in a given Geo-
Interruption)	code.
Coinsurance Loss (Business	Total coinsurance Loss considering all businesses of buildings located in a given Geo-
Interruption)	code.

CECED Loss (Business	Total CECED Loss considering all businesses of buildings located in a given Geo-code.
Interruption)	
Total Loss	Total insurance loss in a given Geo-code

TUR	urance Loss	 Geo-co 	de '	•											
	Geo-code	Latitude	Longitude	Mean Loss Ratio (Buildings)	Insured Amount (Buildings)	Retained Loss (Buildings)	Facultative Loss (Buildings)	Coinsurance Loss (Buildings)	CEDED Loss (Buildings)	Mean Loss Ratio (Contents)	Insured Amount (Contents)	Retained Loss (Contents)	Facultative Loss (Contents)	Coinsurance Loss (Contents)	CED (Co
1	1	44.803697	11.410193	0.199461	155 526.00	0.00	688.68	0.00	30 332.74	0.242770	7 776.30	803.39	311.82	0.00	7
2	2	44.804029	11.406235	0.182276	213 922.00	0.00	865.64	0.00	38 127.20	0.220547	10 696.10	1 121.10	380.51	0.00	8
3	3	44.803065	11.407821	0.182276	150 484.00	0.00	608.94	0.00	26 820.68	0.220547	7 524.20	737.49	268.80	0.00	6
4	4	44.802151	11.409012	0.261903	195 068.00	0.00	1 134.17	0.00	49 954.72	0.293134	9 753.40	1 333.70	452.58	0.00	10
5	5	44.800945	11.409346	0.280892	340 252.00	0.00	2 121.74	0.00	93 452.25	0.337438	17 012.60	2 637.14	926.15	0.00	2 1
6	6	44.800867	11.413629	0.300031	143 574.00	0.00	956.30	0.00	42 120.33	0.386658	7 178.70	1 289.23	444.24	0.00	10
7	7	44.800030	11.411432	0.237987	281 292.00	0.00	1 486.15	0.00	65 457.64	0.279949	14 064.60	1 906.15	623.61	0.00	14
8	8	44.802867	11.412465	0.219327	421 435.00	0.00	2 051.99	0.00	90 380.15	0.259637	21 071.75	2 601.16	877.32	0.00	19
9	9	44.802015	11.411098	0.211810	224 691.00	0.00	1 056.54	0.00	46 535.35	0.258220	11 234.55	1 409.88	462.67	0.00	10
10	10	44.804601	11.413063	0.210145	163 719.00	0.00	763.79	0.00	33 641.01	0.245953	8 185.95	890.23	328.32	0.00	7
11	11	44.805743	11.410076	0.290660	424 804.00	0.00	2 741.11	0.00	120 732.45	0.360229	21 240.20	3 784.52	1 223.91	0.00	26

4.3.3 Export Results of Risk Analysis

All results and output of Risk Analysis can be exported by clicking on Export button. The results can be exported as SHAPE or CSV by selecting SHAPE or CSV in the file type pulldown menu in the Export dialog. SHAPE files can be exported as points or polygons. The database and result files in various formats will be stored in a project directory.

4.4 Mitigation Analysis Output

Results of Mitigation analysis are presented in terms applicability score for the incorporated ground improvement liquefaction mitigation techniques and cost-benefit estimation for the application of these different techniques.

Note: here also users are reminded that the results of mitigation analysis are provided just as guidance only and should not be considered for design decision. The results should always be critically reviewed by an experienced local engineer with expertise and understanding of the various assumptions that have been implemented in the development of the Mitigation Analysis System and limitations of the software.

When <u>ALL</u> is selected, the displayed results represent all the outcomes of mitigation techniques applicability score, mitigation cost, expected benefit, and cost benefit ratio. The results are provided at each Asset Level.

	Risk Identification	Latitude	Longitude	EARTHQUAKE DRAINS (Score)	DEEP DYNAMIC COMPACTION (Score)	VIBRO COMPACTION (Score)	BLASTING COMPACTION (Score)	VIBRO REPLACEMENT (Score)	INDUCED PARTIAL SATURATION (Score)	COMPACTION GROUTING (Score)	LOW PRESSURE GROUTING (Score)	JET GROUTII (Score
15	B015	44.803853	11.405559	173	141	192	90	128	236	227	256	209
16	B016	44.803192	11.404738	173	141	192	90	128	236	227	256	209
17	B017	44.803499	11.405588	173	141	192	90	128	236	227	256	209
18	B018	44.804262	11.411034	173	141	192	90	128	236	227	256	209
19	B019	44.803789	11.410564	173	141	192	90	128	236	227	256	209
20	B020	44.804494	11.410094	173	141	192	90	128	236	227	256	209
21	B021	44.804180	11.410419	173	141	192	90	128	236	227	256	209
22	B022	44.804892	11.411208	173	141	192	90	128	236	227	256	209
23	B023	44.804677	11.411108	173	141	192	90	128	236	227	256	209
24	B024	44.804846	11.410874	173	141	192	90	128	236	227	256	209
25 <	B025	44.804519	11.411434	173	141	192	90	128	236	227	256	209

4.4.1 Mitigation Techniques Applicability Score

When <u>MITIGATION TECHNIQUES APPLICABILITY SCORE</u> is selected, the displayed results represent the overall applicability score for each of the 10 incorporated ground improvement mitigation techniques estimated for each considered asset (building or infrastructure) selected for mitigation analysis.

-		IQUES APPL	ICABILITY SC	MITIGATI	ION COST EXP	ECTED DENEFTT	COST BENEFIT F	CATLO (CBR)						
	Risk Identification	Latitude	Longitude	EARTHQUAKE DRAINS (Score)	DEEP DYNAMIC COMPACTION (Score)	VIBRO COMPACTION (Score)	BLASTING COMPACTION (Score)	VIBRO REPLACEMENT (Score)	INDUCED PARTIAL SATURATION (Score)	COMPACTION GROUTING (Score)	LOW PRESSURE GROUTING (Score)	JET GROUTING (Score)	DEEP SOIL MIXING (Score)	HEIGHEST RANKED G. I. TECHNOLOGY
	B015	44.803853	11.405559	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B016	44.803192	11.404738	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B017	44.803499	11.405588	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B018	44.804262	11.411034	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B019	44.803789	11.410564	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B020	44.804494	11.410094	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B021	44.804180	11.410419	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B022	44.804892	11.411208	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B023	44.804677	11.411108	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B024	44.804846	11.410874	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING
	B025	44.804519	11.411434	173	141	192	90	128	236	227	256	209	191	LOW PRESSURE GROUTING

4.4.2 Mitigation Cost

When <u>MITIGATION COST</u> is selected, the displayed results represent the cost for each of the 10 incorporated ground improvement mitigation techniques estimated for each considered asset (building or infrastructure) selected for mitigation analysis.

ALL	MITIGATION TECHN	IQUES APPL	ICABILITY SC	ORE MITIGATIO	N COST EXPECTE	D BENEFIT COST	BENEFIT RATIO (CE	sk)					
	Risk Identification	Latitude	Longitude	EARTHQUAKE DRAINS (Mitigaton Cost)	DEEP DYNAMIC COMPACTION (Mitigaton Cost)	VIBRO COMPACTION (Mitigaton Cost)	BLASTING COMPACTION (Mitigaton Cost)	VIBRO REPLACEMENT (Mitigaton Cost)	INDUCED PARTIAL SATURATION (Mitigaton Cost)	COMPACTION GROUTING (Mitigaton Cost)	LOW PRESSURE GROUTING (Mitigaton Cost)	JET GROUTING (Mitigaton Cost)	DEEP SOIL MIXING (Mitigaton Cost)
15	B015	44.803853	11.405559	6 996	13 992	13 992	13 992	13 992	13 992	13 992	13 992	13 992	13 992
6	B016	44.803192	11.404738	5 036	10 073	10 073	10 073	10 073	10 073	10 073	10 073	10 073	10 073
7	B017	44.803499	11.405588	6 833	13 665	13 665	13 665	13 665	13 665	13 665	13 665	13 665	13 665
в	B018	44.804262	11.411034	34 723	69 445	69 445	69 445	69 445	69 445	69 445	69 445	69 445	69 445
9	B019	44.803789	11.410564	12 283	24 565	24 565	24 565	24 565	24 565	24 565	24 565	24 565	24 565
)	B020	44.804494	11.410094	9 966	19 933	19 933	19 933	19 933	19 933	19 933	19 933	19 933	19 933
	B021	44.804180	11.410419	8 351	16 701	16 701	16 701	16 701	16 701	16 701	16 701	16 701	16 701
2	B022	44.804892	11.411208	8 495	16 990	16 990	16 990	16 990	16 990	16 990	16 990	16 990	16 990
3	B023	44.804677	11.411108	11 879	23 759	23 759	23 759	23 759	23 759	23 759	23 759	23 759	23 759
1	B024	44.804846	11.410874	13 281	26 562	26 562	26 562	26 562	26 562	26 562	26 562	26 562	26 562
5	B025	44.804519	11.411434	3 825	7 651	7 651	7 651	7 651	7 651	7 651	7 651	7 651	7 651

4.4.3 Expected Benefit

When **<u>EXPECTED BENEFIT</u>** is selected, the displayed results represent the expected benefit for each of the 10 incorporated ground improvement mitigation techniques estimated for each considered asset (building or infrastructure) selected for mitigation analysis.

MITIGATION TECH	NIQUES APPL	ICABILITY SO	DRE MITIGATION O	OST EXPECTED BEN	COST BENEFIT	RATIO (CBR)								
A Risk Identification	Latitude	Longitude	EARTHQUAKE DRAINS (Expected Benefit)	DEEP DVNAMIC COMPACTION (Expected Benefit)	VIBRO COMPACTION (Expected Benefit)	BLASTING COMPACTION (Expected Benefit)	VIBRO REPLACEMENT (Expected Benefit)	INDUCED PARTIAL SATURATION (Expected Benefit)	COMPACTION GROUTING (Expected Benefit)	LOW PRESSURE GROUTING (Expected Benefit)	JET GROUTING (Expected Benefit)	DEEP SOIL MIXING (Expected Benefit)	MAXIMUM BENEFIT	
8012	44.803577	11.405844	17 449.10	13 086.80	8 724.55	10 905.70	11 996.30	9 815.12	15 268.00	14 177.40	16 358.50	13 086.80	EARTHQUAKE DRAIN	
B013	44.803335	11.405187	36 570.70	27 428.00	18 285.30	22 856.70	25 142.30	20 571.00	31 999,40	29 713.70	34 285.00	27 428.00	EARTHQUAKE DRAIN	
8014	44.803718	11.405271	38 747.60	29 060.70	19 373.80	24 217.20	26 639.00	21 795.50	33 904.10	31 482.40	36 325.80	29 060.70	EARTHQUAKE DRAINS	
B015	44.803853	11.405559	93 870.30	70 402.70	46 935.20	58 668.90	64 535.80	52 802.10	82 136.50	76 269.60	88 003.40	70 402.70	EARTHQUAKE DRAINS	
8016	44.803192	11,404738	106 936.00	80 201.80	53 467.80	66 834.80	73 518.30	60 151.30	93 568.70	86 885.20	100 252.00	80 201.80	EARTHQUAKE DRAINS	
8017	44.803499	11.405588	17 168.60	12 876.40	8 584.29	10 730.40	11 803.40	9 657.33	15 022.50	13 949.50	16 095.50	12 876.40	EARTHQUAKE DRAIN	
8018	44.804262	11,411034	13 113.00	9 834.77	6 556.51	8 195.64	9 015.21	7 376.08	11 473.90	10 654,30	12 293.50	9 834.77	EARTHQUAKE DRAIN	
8019	44.803789	11.410564	13 907.30	10 430.50	6 953.63	8 692.04	9 561.25	7 822.84	12 168.90	11 299.70	13.038.10	10 430.50	EARTHQUAKE DRAIN	
8020	44.804494	11.410094	29 908.80	22 431.60	14 954.40	18 693.00	20 562.30	16 823.70	26 170.20	24 300.90	28 039.50	22 431.60	EARTHQUAKE DRAIN	
8021	44.804180	11.410419	113 282.00	84 961.20	56 640.80	70 801.00	77 881.10	63 720.90	99 121.40	92 041.30	106 202.00	84 961.20	EARTHQUAKE DRAIN	
8022	44.804892	11.411208	118 343.00	88 756.90	59 171.30	73 964.10	81 360.50	66 567.70	103 550.00	96 153.40	110 946.00	88 756.90	EARTHQUAKE DRAIN	
8023	44,804677	11,411108	14 939 50	11 204.60	7 469 74	9 337 18	10,270,90	8.403.46	13,072,00	12 138 30	14.005.00	11 204 60	FARTHOUAKE DRAIN	

4.4.4 Cost-Benefit Ratio (CBR)

When <u>COST BENEFIT RATIO (CBR)</u> is selected, the displayed results represent the cost-benefit ratio for each of the 10 incorporated ground improvement mitigation techniques estimated for each considered asset (building or infrastructure) selected for mitigation analysis.

LL	MITIGATION TECHN	IQUES APPL	ICABILITY SC	ORE MITIGATI	ION COST EXPL	ECTED BENEFIT	COST BENEFIT	RATIO (CBR)							
	Risk Identification	Latitude	Longitude	EARTHQUAKE DRAINS (CBR)	DEEP DYNAMIC COMPACTION (CBR)	VIBRO COMPACTION (CBR)	BLASTING COMPACTION (CBR)	VIBRO REPLACEMENT (CBR)	INDUCED PARTIAL SATURATION (CBR)	COMPACTION GROUTING (CBR)	LOW PRESSURE GROUTING (CBR)	JET GROUTING (CBR)	DEEP SOIL MIXING (CBR)	MINIMUM CBR	
12	B012	44.803577	11.405844	0.89	2.37	3.56	2.85	2.59	3.16	2.03	2.19	1.90	2.37	EARTHQUAKE DRAINS	
13	B013	44.803335	11.405187	0.42	1.13	1.69	1.35	1.23	1.50	0.97	1.04	0.90	1.13	EARTHQUAKE DRAINS	
14	B014	44.803718	11.405271	0.17	0.46	0.68	0.55	0.50	0.61	0.39	0.42	0.37	0.46	EARTHQUAKE DRAINS	
15	B015	44.803853	11.405559	0.07	0.20	0.30	0.24	0.22	0.26	0.17	0.18	0.16	0.20	EARTHQUAKE DRAINS	
16	B016	44.803192	11.404738	0.05	0.13	0.19	0.15	0.14	0.17	0.11	0.12	0.10	0.13	EARTHQUAKE DRAINS	
17	B017	44.803499	11.405588	0.40	1.06	1.59	1.27	1.16	1.42	0.91	0.98	0.85	1.06	EARTHQUAKE DRAINS	
18	B018	44.804262	11.411034	2.65	7.06	10.59	8.47	7.70	9.41	6.05	6.52	5.65	7.06	EARTHQUAKE DRAINS	
19	B019	44.803789	11.410564	0.88	2.36	3.53	2.83	2.57	3.14	2.02	2.17	1.88	2.36	EARTHQUAKE DRAINS	
20	B020	44.804494	11.410094	0.33	0.89	1.33	1.07	0.97	1.18	0.76	0.82	0.71	0.89	EARTHQUAKE DRAINS	
21	B021	44.804180	11.410419	0.07	0.20	0.29	0.24	0.21	0.26	0.17	0.18	0.16	0.20	EARTHQUAKE DRAINS	
22	B022	44.804892	11.411208	0.07	0.19	0.29	0.23	0.21	0.26	0.16	0.18	0.15	0.19	EARTHQUAKE DRAINS	

By double click on any given individual asset, a table with compiled information summarizing all the mitigation analysis results is displayed.

G.I. TECNOLOGY	Score	Mitigation cost	Annual Freguency of Damage (%)	Expected Annual Loss Before Mitigation (EALI)	Expected Annual Loss After Mitigation (EALM)	Expected Loss Avoided (EALI - EALM)	Expected Benefit	Cost-Benefit Rati	
EARTHQUAKE DRAINS	173	6 833	0.464764	642.03	128.41	513.62	17 168.60	0.40	
DEEP DYNAMIC COMPACTION	141	13 665	0.464764	642.03	256.81	385.22	12 876.40	1.06	
VIBRO COMPACTION	192	13 665	0.464764	642.03	385.22	256.81	8 584.29	1.59	
BLASTING COMPACTION	90	13 665	0.464764	642.03	321.01	321.01	10 730.40	1.27	
VIBRO REPLACEMENT	128	13 665	0.464764	642.03	288.91	353.12	11 803.40	1.16	
INDUCED PARTIAL SATURATION	236	13 665	0.464764	642.03	353.12	288.91	9 657.33	1.42	
COMPACTION GROUTING	227	13 665	0.464764	642.03	192.61	449.42	15 022.50	0.91	
LOW PRESSURE GROUTING	256	13 665	0.464764	642.03	224.71	417.32	13 949.50	0.98	
JET GROUTING	209	13 665	0.464764	642.03	160.51	481.52	16 095.50	0.85	
DEEP SOIL MIXING	191	13 665	0.464764	642.03	256.81	385.22	12 876.40	1.06	

For each of the 10 ground improvement mitigation techniques the following results are provided for each individual asset.

Results of Mitigation Analysis	Description
at Asset Level	
Score	Overall score estimated for each of the 10 ground improvement mitigation
	techniques for the considered asset
Mitigation cost	Estimated cost of mitigation technique for the considered asset
Annual Frequency of Damage	Estimated annual frequency of damage for the considered asset
(%)	
Expected Annual Loss Before	Estimated expected annual loss to the considered asset before the application of
Mitigation (EALI)	the mitigation technique
Expected Annual Loss After	Estimated (conservative estimation) expected annual loss to the considered asset
Mitigation (EALM)	after the application of the mitigation technique
Expected Loss Avoided	Estimated loss to be avoided if a given technique is applied to the considered
	asset (EALI – EALM)
Expected Benefit	Estimated expected benefit considering the time horizon of the considered asset
Cost-Benefit Ratio (CBR)	Ratio of Mitigation Cost divided by Expected Benefit, where a given mitigation
	option is considered favourable if CBR<1

4.4.5 Export Results of Mitigation Analysis

All results and output of Mitigation Analysis can be exported by clicking on Export button. The results can be exported as SHAPE or CSV by selecting SHAPE or CSV in the file type pulldown menu in the Export dialog. SHAPE files can be exported as points or polygons. The database and result files in various formats will be stored in a project directory.

🚯 Export lique	efaction mi	itigation resu	lts table										\times
Look in:	D:\LIQUE	EFACT\Results	Mitigation A	Analysis			•	G	Θ	0	R	::	
S My Com	nputer	Name				^							
		<											>
File name:												Save	
Files of type:	CSV (*.csv *	.txt)								•	C	ancel	
S	CSV (*.csv * SHAPE (*.sh	.txt) p *shape)									_	_	

5 TECHNICAL DESCRIPTIUON AND BACKGROUND

The following sections provide detailed technical description of the different methodologies and approaches that have been incorporated in the three main protocols of analysis of the LIQUEFACT software: the protocol for liquefaction hazard analysis, the protocol for risk analysis, and the protocol for mitigation analysis.

5.1 Liquefaction Hazard Assessment

The process of liquefaction hazard analysis consists in assessing whether an asset (e.g. individual building/CI asset, portfolio of buildings/distributed infrastructure assets, etc.) is located in a geographical area likely to be affected by an EILD event. The required user-supplied input data are related to liquefaction hazard and seismic hazard modelling.

Methodologies of liquefaction hazard assessment are based on two approaches: <u>Quantitative</u> and <u>Qualitative</u> based approach.

5.1.1 Quantitative Analysis of Liquefaction Hazard

The concept of the quantitative approach consists of number of analyses to be carried out in two main sequences (Figure 5):

- Step-1 *Liquefaction Triggering Analysis*: to estimate the tendency of developing liquefaction under a given seismic input. The analysis is based on computation of the factor of safety against liquefaction.
- Step-2 *Liquefaction-induced Surficial Manifestations*: implies to evaluate the effects at the ground level, where indicators are adopted to broadly quantify the severity of liquefaction.

Figure 5. Concept of liquefaction hazard assessment based on quantitative analysis

5.1.1.1 Liquefaction Triggering Analysis

In the LIQUEFACT software, the triggering of liquefaction at a given site can be evaluated by applying Cyclic Stress approach, using user-supplied soil profiles data. This approach implies the calculation of a liquefaction safety factor (FSL) obtained by dividing the Cyclic Resistance Ratio (CRR) producing liquefaction with the Cyclic Stress Ratio (CSR) induced by the earthquake. According to this method, seismic liquefaction is triggered in a susceptible soil when the seismic demand expressed as CSR) exceeds the resistance of such soils (expressed as CRR).

The CRR is a representation of the ability of the soil to resist liquefaction demand and is related to its relative density and Fines Content (FC). It is also recognized that the stress conditions (confining pressure, cyclic shear and initial static shear stresses) play an important role in the liquefaction behaviour of soil, the type of failure mechanism and the mode of development of soil deformation, especially in the case of slopes of sandy deposits.

Site characterization for liquefaction triggering analysis includes collection of information to accurately estimate the values of CRR and earthquake-induced CSR at the site. The goal of a liquefaction triggering analysis is to evaluate whether liquefaction is expected to occur at a site under a given seismic load. An FSL less than 1.0 is generally assumed to indicate that liquefaction is expected to trigger at that depth. The factor of safety against liquefaction, however, does not give insights into the associated uncertainties and variability related to the calculation of CRR and CSR. In practice, a minimum required FSL for design as low as 1.0 has been required when coupled with an extreme ground motion level. Typical minimum values used in practice are between 1.1 and 1.3.

5.1.1.1.1 CPT-based Procedure

One of the most popular CPT-based procedure to evaluate the Factor of Safety against liquefaction at each depth of a soil profile is the Boulanger and Idriss (2014), which is summarized in Figure 6. Boulanger and Idriss (2014) calculate the CRR from the measured CPT tip resistance, qc, the CPT sleeve friction, fs, and the effective vertical stress, σ'_{v} , in the soil. These are used to estimate an overburden correction factor, CN, and correct the tip resistance to account for the overburden stress, q_{c1} . The normalized overburden stress, q_{c1} , is q_{c1} divided by the atmospheric pressure (pa=100 kPa). During the iteration (usually about 3 cycles), q_{c1} is always based on the measured tip resistance, qc, while CN is based on the iteratively updated value for q_{c1N} . A second correction is made for the fines content, FC. With the assumed flat ground or uniform surcharge for the regional-scale analysis, the correction for the effects of an initial static shear stress ratio is K α =1.

To characterize the soil behaviour type (SBT) and to evaluate the percentage of fines content, FC, the empirical correlations defined by Robertson (2015) are used.

Figure 6. Flowchart of the CPT-based procedure for liquefaction triggering analysis

5.1.1.1.2 SPT-based Procedure

The SPT-based procedure that have been incorporated in the LIQUEFACT software for computation of Factor of Safety against liquefaction at each depth of a soil profile is also the one introduced by Boulanger and Idriss (2014), and which is summarized in Figure 7. The procedure consists on calculating the CRR starting from the number of blows N1₆₀, normalized with respect to the atmospheric pressure Pa and increased to account for the fine content.

$$(N_1)_{60cs} = CN \cdot CE \cdot CB \cdot CR \cdot CS \cdot N + \Delta(N_1)_{60}$$

where CN is the correction factor to adjust the blow count to a reference stress of one atmosphere; CE is a correction factor for the kinetic energy of the hammer (i.e. hammer weight and height of fall); CB is a correction factor for the borehole diameter; CR is a rod length correction factor; CS is a correction factor for the configuration of the SPT sampler; N is the recorded blow count; and $\Delta(N1)_{60}$ is the correction factor for the fines content.

There is uncertainty in the computed FS from a stress-based analysis not only because of the uncertainty in the location of the CRR relationship but also because the values of the parameters in the CSR and (N1)_{60CS} equations are not known precisely. In fact, explicit consideration of uncertainty associated with a correction factor may even increase the uncertainty associated with the liquefaction potential assessment. The soil behavior type index Ic, is evaluated with numerous empirical correlations between in-situ tests and geotechnical parameters.

	_
$(N_1)_{60} = C_N * N_{60}$ $C_N = (\frac{Pa}{\sigma'_{\nu}})^m \le 1.7$ $m = 0.784 - 0.0768 * \sqrt{(N_1)_{60cs}}$	$CSR = 0.65 * \left(\frac{a_{max}}{g}\right) * \left(\frac{\sigma_v}{\sigma'_v}\right) * rd * \left(\frac{1}{MSF}\right) * \left(\frac{1}{K\sigma'_v}\right)$
Fine Content evaluation (FC) $Fc = 80 * (Ic + C_{FC}) - 137$ $C_{FC} = -0.29, 0, +0.29$ CFC is a fitting parameter, while Ic is evaluated according to Mayne (2006) (Vs^2)	$ln(rd) = \alpha + \beta M$ $\alpha = -1.012 - 1.126sen(\frac{z}{11.73} + 5.133)$ $\beta = 0.106 - 0.118sen(\frac{z}{11.28} + 5.142)$
$Ic = -0.7174 * \ln\left(\frac{v_{s}}{9.81 * z}\right) + 6.3211$ $Vs = 100.59 * N_{SPT}^{0.302}$	$K\sigma = 1 - C\sigma \ln\left(\frac{\sigma'_{\nu}}{pa}\right) \le 1.1$ $C\sigma = \frac{1}{100 - 255 + (N)^{0.5}} \le 0.3$
Modified after Palmer and Stuart (1957) $\Delta(N_1)_{60} = exp\left(1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01}\right)^2\right)$	$MSF = 6.9 \exp\left(-\frac{M}{4}\right) - 0.058$
$(N_1)_{60cs} = (N_1)_{60} + \Delta(N_1)_{60}$ $CRR = exp(\frac{(N_1)_{60cs}}{14.1} + \left(\frac{(N_1)_{60cs}}{126}\right)^2 - \left(\frac{(N_1)_{60cs}}{23.6}\right)^3 + \left(\frac{(N_1)_{60cs}}{25.4}\right)^4 - 2.8)$	Idriss and Boulanger (2008)
	$FSL = \frac{CRR}{CSR}$

Figure 7. Flowchart of the SPT-based procedure for liquefaction triggering analysis

5.1.1.1.3 Vs-based Procedure

Measuring shear wave velocity (Vs) is another test used to characterize soils in situ. Vs refers to the speed at which a shear wave propagates through the ground. The speed of wave propagation depends on the density of the soil, the directions of wave propagation and particle motion, and the effective stresses in those two directions.

Figure 8 illustrates the flowchart of the VS-based concept for the liquefaction triggering analysis and which is based on the Andrus and Stokoe (2000) procedure for the calculation of CRR. Soil behaviour type index is evaluated based on the procedure proposed by Mayne (2006):

 $Ic = -0.7174 \cdot \ln[Vs^2 / (9.81 \cdot z)] + 6.3211$

Then, the fine content FC can be evaluated by appling the following correlation (Robertson and Fear, 1995):

Regarding Factor of Safety, Juang et al. (2005) concluded that the traditional FSL is conservative for calculating CRR, resulting in lower factors of safety and over-prediction of liquefaction occurrence. To account for this, they introduce a multiplication factor of 1.4 to obtain a more realistic estimate of the factor of safety.

ka1 is the correction factor accounting for the age of the deposit

Time (years)	Soil aging factor (Ka1)
1	1.09
10	1.01
100	0.94
1 000	0.88
10 000	0.83
100 000	0.78

$$CRR = 0.022 * \left(\frac{V_{S1,csa1}}{100}\right)^2 + 2.8 * \left(\frac{1}{V_{S1}^* - V_{S1,csa1}} - \frac{1}{V_{S1}^*}\right)$$

 V_{S1}^{s} is the limiting upper value of $V_{S1,csa1}$ for cyclic liquefaction occurrence, which varies between 200-215 m/s depending on the fines content of the soil.

rd = 1 - 0.00765z if z < 9.2mrd = 1.174 - 0.0267z if $z \ge 9.2m$ Liao and Whitman (1986)

$$K\sigma = 1 - C\sigma \ln\left(\frac{\sigma'_{\nu}}{p\alpha}\right) \le 1.1$$

$$C\sigma = \frac{1}{18.9 - 3.1 * \left(\frac{Vs_1}{100}\right)^{1.976}} \le 0.3$$

$$MSF = \left(\frac{Mw}{7.5}\right)^{-2.56}$$
Andrus and Stokoe (1997)
$$FSL = 1.4 * \frac{CRR}{CSR}$$

Juang et al. (2005)

5.1.1.2 Liquefaction-induced Surficial Manifestations

Liquefaction-induced Surficial Manifestations: implies to evaluate the effects at the ground level. At this stage analyses are conducted in free field conditions, neglecting the presence of buildings or infrastructures and their possible interaction with the subsoil, and thus liquefaction severity indicators are adopted to broadly quantify the severity of liquefaction.

5.1.1.2.1 Liquefaction Severity Indicators

Once the Factor of Safety (FSL) has been calculated at each depth, synthetic indicators of the liquefaction severity on the ground (free field) can be evaluated. These integrate the contribution to

the liquefaction of each layers, generally for the first 20 meters of depth, giving a measure of the liquefaction severity on the surface (free field).

In general terms, a liquefaction severity indicator can be defined as the integral of the product between a function of the Factor of Safety against Liquefaction $f_1(FSL)$ and a weight function that emphasizes the severity of liquefaction at a lower depth.

$$INDEX = \int_{zmax} f_1(FSL) * w(z)dz$$

Various liquefaction severity or damage potential indicators were proposed in literature to provide a measure of the liquefaction-induced surficial evidence, based on the cumulative liquefaction response of a soil profile. Table 1 illustrates the most widespread indicators to quantify the damage to the ground by integrating the estimated effects of liquefaction in the first 20 m depth.

The most used of them are: Liquefaction Potential Index "LPI" (Iwasaki et al., 1978); one-dimensional volumetric reconsolidation settlement "S" (Zhang et al., 2002); Liquefaction Severity Number "LSN" (Van Ballegooy et al., 2014).

Index	Reference	$f_1(FSL)$	w(z)	Z
LPI	Iwasaki et al., 1978	$\begin{array}{ll} 1 - FSL & \text{if } FSL < 1 \\ 0 & \text{if } FSL \ge 1 \end{array}$	10 - 0.5z	$Z_{min} = 0$
				$Z_{max} = 20m$
LSN	van Ballegooy et al., 2014	$\varepsilon_{v} = \varepsilon_{v} (FSL, q_{C1Ncs})$	1000	$Z_{min} = 0$
			Ζ	$Z_{max} = 20m$
S	Zhang et al., 2002	$\varepsilon_{v} = \varepsilon_{v} (FSL, q_{C1Ncs})$	-	$Z_{min} = 0$
				$Z_{max} = \max depth$

Table 1 List of liquefaction severity indicators for the quantification of damage to the ground due to liquefaction

5.1.1.2.2 Liquefaction Potential Index (LPI)

The Liquefaction Potential Index LPI is the summation of liquefaction severity in each soil layer, which in turn is a function of the Factor of Safety (FSL), weighted by a depth factor that decreases linearly from 10 to 0 over the top 20 m. The LPI value is between 0 (representing no liquefaction expected) and 100 (representing extreme liquefaction effects expected to the ground surface).

By weighting soils to have an increasing influence on LPI as depth decreases, this parameter is able to represent the beneficial effects of an increasing non-liquefied surface layer thickness, or crust. Iwasaki et al. (1978) defined the Liquefaction Potential Index (LPI) of a 20 m deep soil profile as:

$$LPI = \int_0^{20m} F_1(z) \cdot W(z) dz$$

where: W(z) = 10 - 0.5z and $F_1(z) = \begin{cases} 1 - FSL & \text{if } FSL < 1\\ 0 & \text{if } FSL \ge 1 \end{cases}$

from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748

z is the depth below the ground surface in metres; and FSL(z) is the Factor of Safety against Liquefaction.

In literature various qualitative-based classification definitions associated with LPI range values have been introduced in order to quantify the different liquefaction risk level to the ground. In the LIQUEFACT software, the used defaults ranges values associated to the different risk level classes are adopted and modified from the classes suggested by Iwasaki et al. (1978). However, users can always modify and update these ranges values.

Liquefaction Risk Levels (I	LPI) >
Classification	LPI Range
No Liquefaction Risk	LPI = 0
Low Liquefaction Risk	0 < LPI <= 2
Moderate Liquefaction Risk	2 < LPI <= 5
High Liquefaction Risk	5 < LPI <= 15
Very High Liquefaction Risk	LPI > 15
Edit	OK Help

5.1.1.2.3 Liquefaction Severity Number (LSN)

Liquefaction Severity Number was developed as indicator to assess the performance of residential land in Canterbury in future earthquakes and was validated against the residential land damage observed in Canterbury. The LSN depends on the seismic load, depth to groundwater and geological profile (Van Ballegooy et al. 2014). The LSN is defined as:

$$LSN = 1000 \, \int_0^{20m} \frac{\varepsilon_v(z)}{z} \, dz$$

Where: εv (z) is the volumetric densification strain at depth, z, based on Zhang et al. (2002); and z is the depth in metres below the ground surface.

LSN is defined as the summation of the post-liquefaction volumetric reconsolidation strains calculated for each soil layer divided by the depth to the midpoint of that layer. The value of LSN is theoretically between 0 (representing no liquefaction vulnerability) to a very large number (representing extreme liquefaction vulnerability). The hyperbolic depth weighting function (1/z) can yield a very large value only when the groundwater table is very close to the ground surface and soil layers immediately below the ground surface liquefy. LSN is an extension of the LPI philosophy. It attempts to quantify the effects of liquefaction and consequent land damage using volumetric strains (adopted in conventional

from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748

settlement calculations (Zhang et al. 2002). The hyperbolic function gives much greater weight to liquefaction at shallow depths and considers shallow liquefaction (<6 m) to be the key contributor in the overall damage to land and relatively light residential buildings supported on shallow foundations.

In literature various qualitative-based classification definitions associated with LSN range values have been introduced in order to quantify the different liquefaction risk level to the ground. In the LIQUEFACT software, the used defaults ranges values associated to the different risk level classes are adopted and modified from the classes defined by Tonkin and Taylor (2013). However, users can always modify and update these ranges values.

Liquefaction Risk Levels (L	.SN) ×
Classification	LSN Range
No Liquefaction Risk	LSN < 5
Low Liquefaction Risk	5 < LSN <= 10
Moderate Liquefaction Risk	10 < LSN <= 30
High Liquefaction Risk	30 < LSN <= 50
Very High Liquefaction Risk	LSN > 50
Edit	OK Help

5.1.1.2.4 Liquefaction-Induced Ground Settlements (Free-Field)

Liquefaction-induced ground settlements are essentially vertical deformations of superficial soil layers caused by the densification and compaction of loose granular soils following earthquake loading. Several methods have been proposed to calculate liquefaction-induced ground deformations, including numerical and analytical methods, laboratory modelling and testing, and field-testing-based methods.

The expense and difficulty associated with obtaining and testing high quality samples of loose sandy soils may only be feasible for high-risk projects where the consequences of liquefaction may result in severe damage and large costs. Semi-empirical approaches using data from field tests are likely best suited to provide simple, reliable, and direct methods to estimate liquefaction-induced ground deformations for low to medium-risk projects and also to provide preliminary estimates for higher risk projects. The post-liquefaction volumetric strain can then be estimated using below, that correspond to Figure 9, for every reading in the CPT sounding.

$$S = \sum_{i=1}^{j} \varepsilon_{vi} \cdot \Delta z_i$$

Where: S is the calculated liquefaction-induced ground settlement at the CPT location; ε_{vi} is the postliquefaction volumetric strain for the soil sublayer i; Δz_i is the thickness of the sublayer i; j is the number of soil sublayers the result should be an appropriate index of potential liquefaction-induced ground settlement at the CPT location due to the design earthquake.

Figure 9. Relationship between post-liquefaction volumetric densification strains, Ev, and the normalized CPT tip resistance, qc1N, for selected factors of safety, FS (Zhang et al., 2002)

At each layer, the Factor of Safety (FS) and the normalised tip resistance, q_{c1N} , are used to calculate the post-liquefaction volumetric densification strain, \mathcal{E}_{v} . These strains are interpolated from the curves proposed by Zhang et al. (2002), except that the CPT tip resistance is corrected to remove the effect of overburden stress using the iterative Idriss and Boulanger (2014) procedure.

The following equations for the relationships plotted in Figure 9 are given by Zhang et al. (2002). Table 2 lists additional constraints that are applied to the volumetric densification calculations using the equations of FS given in Zhang et al. (2002).

$$\begin{array}{ll} \text{if FS} \leq 0.5, \qquad \varepsilon_{\mathrm{v}} = 102 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-0.82} & \text{for } 33 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 0.6, \qquad \varepsilon_{\mathrm{v}} = 102 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-0.82} & \text{for } 33 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 147 \\ \text{if FS} = 0.6, \qquad \varepsilon_{\mathrm{v}} = 2411 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-1.45} & \text{for } 147 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 0.7, \qquad \varepsilon_{\mathrm{v}} = 102 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-1.45} & \text{for } 33 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 110 \\ \text{if FS} = 0.7, \qquad \varepsilon_{\mathrm{v}} = 102 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-1.42} & \text{for } 110 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 0.7, \qquad \varepsilon_{\mathrm{v}} = 1701 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-1.42} & \text{for } 110 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 0.8, \qquad \varepsilon_{\mathrm{v}} = 102 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-0.82} & \text{for } 33 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 0.8, \qquad \varepsilon_{\mathrm{v}} = 1690 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-1.46} & \text{for } 80 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 0.9, \qquad \varepsilon_{\mathrm{v}} = 102 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-0.82} & \text{for } 33 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 0.9, \qquad \varepsilon_{\mathrm{v}} = 1430 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-1.48} & \text{for } 60 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 1.0, \qquad \varepsilon_{\mathrm{v}} = 64 (q_{\mathrm{clN}})_{\mathrm{cs}}^{-0.93} & \text{for } 33 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \text{if FS} = 1.1, \qquad \varepsilon_{\mathrm{v}} = 11(q_{\mathrm{clN}})_{\mathrm{cs}}^{-0.65} & \text{for } 33 \leq (q_{\mathrm{clN}})_{\mathrm{cs}} \leq 200 \\ \end{array}$$

if FS = 1.2,	$\varepsilon_{\rm v} = 9.7 (q_{\rm clN})_{\rm cs}^{-0.69}$	for 33 $\leq (q_{elN})_{es} \leq 200$
if FS = 1.3,	$\varepsilon_{\rm v} = 7.6 (q_{\rm clN})_{\rm cs}^{-0.71}$	for 33 $\leq (q_{elN})_{es} \leq 200$
if FS = 2.0,	$\varepsilon_v = 0.0$	for $33 \le (q_{elN})_{es} \le 20$

Table 2 List of additional constraints that are applied to the volumetric densification calculations using the different equations of FS given in Zhang et al. (2002)

Calculation Issue	Description
Strain equation are only provided for	For q _{c1ncs} < 33, strain is bounded by the limiting value,
	calculated using $q_{cincs} = 33$
q _{c1} /q _{c1ncs} ≥33	Linear interpolation is used between the published
	equations
Strain equations are only provided for	Maximum strain = 102 $q_{c1ncs}^{-0.82}$
specific Factors of Safety	

The Settlement indicator integrates the volumetric densification strains, \mathcal{E}_{v} , calculated using the Zhang et al. (2002) method, over the total depth of the CPT profile, Z, using:

$$S_{V1,d} = \int_0^Z \varepsilon_v(z) dz$$

Where: $\varepsilon v(z)$ is the volumetric densification strain at depth, z, based on Zhang et al. (2002); Z is the total depth of the CPT profile; z is the depth in metres below the round surface.

There are always volumetric densification strains when the excess pore pressure rises during shaking, so strains are included for all factors of safety up to FSL = 2.0 (i.e. including non-liquefied layers). Settlements calculated using this method for deeper CPT profiles are typically greater than settlements calculated for shallower CPT profiles. The calculated values are therefore not strictly comparable between CPT profiles.

5.1.1.2.5 Equivalent Soil Profile (ESP)-based Classification

A new hazard-independent liquefaction classification is proposed where the soil profile is defined as an equivalent 3-layered soil profile. The classification consists of only three features, highly influential to the ground behaviour: the depth of the non-liquefying crust, and the thickness and liquefaction resistance of the potentially liquefiable layer. Figure 10 illustrates the general steps for the development of equivalent soil profile (ESP) and evaluation of the level of liquefaction hazard. The concept of this methodology consists of 2 main steps (Viana da Fonseca et al. 2018a):

- Step 1: is about generating 3-layered soil profile, i.e. the equivalent soil profile, from CPT, SPT or Vs data to evaluate the level of liquefaction hazard;
- Step 2 the methodology uses three governing parameters: the depth of the crust (D_{liq}), the thickness of the liquefied layer (H_{liq}) and its liquefaction resistance (CRR_{n15}). Typical ranges of values for each of these variables have been defined, from which 22 different soil profile classes (Table 3) were derived.

Figure 10. General steps of the development of equivalent soil profile (ESP) and range definition for classification (Viana da Fonseca et al. 2018)

Table 2. Concentend	Class of Fault valuet Call Drafile /	
Table 3. Concept and	Class of Equivalent Soli Profile (ESP)

Coil Desistence (CDD)	Liquefiable Layer (H _{liq})	Crust Layer (D _{liq})	ESD profile	
Soli Resistance (CRR _{liq})	Thickness	Thickness	ESP profile	
Weak	Large	Shallow	WLS	
Weak	Large	Mid	WLM	
Weak	Large	Deep	WLD	
Weak	Midsize	Shallow	WMS	
Weak	Midsize	Mid	WMM	
Weak	Midsize	Deep	WMD	
Weak	Thin	Shallow	WTS	
Weak	Thin	Mid	WTM	
Weak	Thin	Deep	WTD	
Midium	Large	Shallow	MLS	
Midium	Large	Mid	MLM	
Midium	Large	Deep	MLD	
Midium	Midsize	Shallow	MMS	
Midium	Midsize	Mid	MMM	
Midium	Midsize	Deep	MMD	
Midium	Thin	Shallow	MTS	
Midium	Thin	Mid	MTM	
Midium	Thin	Deep	MTD	
Strong	Large		SLX	
Strong	Midsize		SMX	
Strong	Thin		STX	
Resist			RXX	

Figure 11. Procedure to implement the CRR-fitted method

The classification of a soil profile can be performed through cyclic element testing to identify key layers, but to allow efficient classification, it is more convenient and reliable to use continuous field data, namely through CPTu results. The procedure can be semi-automated by computing the CRR for a magnitude 7.5 earthquake using a simplified triggering procedure (e.g. Boulanger & Idriss, 2014), and fitting a three-layered profile to the CRR values. The procedure consists of computing every possible three-layered profile so as to minimise the difference between the CRR values of the computed and the equivalent three-layered profiles, as schematically illustrated in Figure 11. The calculation of the error is sensitive to the value set to be the non-liquefying limit of CRR and the maximum depth of the profile. The non-liquefying limit was set to CRR=0.6, as this is a common limit used in simplified procedures (e.g. Youd et al., 2001; Boulanger & Idriss, 2014). Using a higher value means that soil layers with high CRR would generate some error during fitting (Gerace, 2018). The maximum depth was taken as 20 metres, since surficial consequences of liquefaction below such depths are negligible (Maurer et al., 2015). The increment of depths and CRR should be set small enough that they are not influential on the final results. The depth increment was set to 0.1m and the CRR increments were determined by setting the equivalent cone tip resistance for clean sand to range from 0 to 175 kPa in increments of 5kPa to give a CRR range from 0.061 to 0.6.

The implemented algorithm (Figure 11) minimised the normalised difference (equation below), where CRR_{calc} and CRR_{fitted} are the calculated and fitted CRR values, ΔH is the depth increment of the calculated values, $CRR_{non-liq}$ is the non-liquefiable limit and H_{total} is the total height of the profile, capped at the maximum value of 20m.

$$\tilde{\delta} = \frac{\sum \left(CRR_{calc,i} - CRR_{fitted,i} \right) \cdot \Delta H}{CRR_{non-lig} \cdot H_{total}}$$

5.1.1.2.6 Equivalent Soil Profile-based Liquefaction Severity Number LSN(ESP)

Graphs showing the correspondence between ESP classes and LSN values were provided (D3.2 of this project) to allow the backward estimate of likely ESPs in a region given a liquefaction severity estimate. In fact, for the investigated profiles, the LSN was computed for four different hazard level representing: low, moderate, high and severe seismicity (PGA values equal to 0.1g, 0.2g, 0.35g, 0.5g and Mw equal to 7.5). By applying the Bayes theorem, the conditional probability of finding each ESP class for a given LSN range was evaluated and plotted for the before mentioned four levels of seismicity. The PGA values from different magnitude events can be converted to an equivalent magnitude 7.5 event using the magnitude scaling factor (Idriss and Boulanger, 2008).

5.1.2 Qualitative Analysis of Liquefaction Hazard

Liquefaction hazard assessment based on qualitative approach is, in general, considered as level-1 step of liquefaction hazard analysis where no detailed geotechnical soil profile data or specific information on the earthquake are required. The concept is based on using hazard map where level of hazard is qualitatively classified using labels ranging such as "<u>Non-Susceptible</u>", "<u>No Liquefaction</u>" to "<u>Very High Risk of Liquefaction</u>", depending on type of liquefaction severity indicator used. The outcomes from this level of assessment provides qualitative evaluation on the level of exposure that asset(s) is/are likely to be susceptible to, and can be employed as guidance for more detailed analysis (quantitative assessment described above).

5.1.2.1 User-Defined Liquefaction Hazard

User-supplied qualitative liquefaction hazard maps can be in terms of the following liquefaction severity indicators: Liquefaction Susceptibility, Liquefaction Potential Index (LPI), Liquefaction Severity Number (LSN), and Probability of Liquefaction (PL).

- In user-supplied maps in terms of Liquefaction Hazard indicator, three qualitative levels of hazard classification are used for range labels: Noon-susceptible, No Liquefaction, and Liquefaction.
- For user-supplied maps in terms of LPI, LSN and PL indicators, five qualitative levels of hazard classification are used for range labels: Non-Liquefaction Risk, Low Liquefaction Risk, Moderate Liquefaction Risk, High Liquefaction Risk, and Very High Liquefaction Risk.

5.1.2.2 Pre-Defined Liquefaction Hazard

At a first glance, zonation of a large territory for liquefaction risk seems an almost impossible task since liquefaction is a phenomenon of soil instability occurring at a very local scale, that is it may or it may not occur at a specific location and depth from the ground surface depending on whether certain conditions of soil susceptibility and severity of ground shaking are met at that particular depth. Thus, the macrozonation of liquefaction hazard at the continental scale is a truly hard facing challenge. Yet, a qualitative representation of the variability of liquefaction potential within a single country is within reach considering the resolution and accuracy of geological and geotechnical information that is

currently available in the most developed nations. The availability of a macrozonation map of liquefaction risk of a country can be useful to policy makers and administrators of that country in identifying territories that are potentially at risk of earthquake-induced ground failures. This in turn could motivate the interest in drafting plans for further investigations and in-depth studies in those territories.

Macrozonation of liquefaction risk of the European territory was addressed in LIQUEFACT project (Carlo et al 2018). Geo-referenced European earthquake-induced soil liquefaction risk maps were built using available datasets at a continental scale on the expected seismic hazard and on the geological, geomorphological, hydrogeological, shallow lithology and digital terrain information. The macrozonation maps were generated for different levels of severity of expected ground shaking, characterized by a return period of 475, 975 and 2475 years, respectively (Figure 12). The maps use three qualitative levels of hazard classification for range labels: Non-susceptible, No Liquefaction, and Liquefaction.

(a) European liquefaction prediction map for 475 years

(b) European liquefaction prediction map for 975 years

(c) European liquefaction prediction map for 2475 years

Figure 12. Macrozonation of liquefaction risk of the European territory (Carlo et al 2018)

5.1.3 Seismic Hazard Analysis

A key point in liquefaction hazard assessment is the provision of seismic ground motion, in general, generated and integrated in the form of contour maps and location-specific seismic demands.

5.1.3.1 Generate seismic ground motion

The spatial distribution of ground motion can be determined using one of the following methods or sources:

- Scenario Earthquake analysis (repeat of any potential earthquake event);
- Pre-Defined Uniform Hazard map (probabilistic ground motion maps e.g. Share.eu);
- User-Defined Seismic Hazard map (can be based on probabilistic or deterministic ground motion analysis).

5.1.3.1.1 Scenario Earthquake Analysis

Deterministic seismic ground motion demands are calculated for user-specified scenario earthquakes. A scenario earthquake can be either an historic earthquake or a hypothetical earthquake and can be defined using a set of the earthquake source parameters. These parameters can be obtained from the available information related to geological, seismotectonic and geotechnical characteristics of the site of interest as well as physical modelling techniques to provide a reliable and robust deterministic basis for hazard and risk analysis.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748

Scenario earthquake is defined by providing location of the earthquake, depth focal, magnitude, fault orientation, dip angle. Attenuation relationships (also called Ground Motion Prediction Equations - GMPE) are used to calculate ground shaking demand for rock sites. In general, they represent response spectral acceleration ordinates, Sa(T), at 5% elastic damping.

For scenario earthquake analysis, each attenuation table must contain the following information:

Magnitude limits:MINF: Lower limit of magnitude given in the table.MSUP: Upper limit of magnitude given in the table.NMAG: Number of magnitudes for which intensity is given.

It is assumed that intensities are given for magnitudes M(K), where M(K)=MINF+(K-1)*DMAG, and DMAG=(MSUP-MINF)/(NMAG-1).

Distance limits: RINF: Lower limit of distance given in the table. RSUP: Upper limit of distance given in the table. NRAD: Number of distances for which intensity is given (Integer format). TYPE: An integer indicating the type of distance used by the attenuation table.

It is assumed that intensities are given for distances R(K), where log(R(K))=log(RINF)+(K-1)*DLRAD, where DLRAD=(log(RSUP)-log(RINF))/(NRAD-1). That is, distances are supposed to be logarithmically spaced.

TYPE represents the type of distance for the selected attenuation model: Focal, Epicentral, Joyner and Boore, Closest to rupture area (Rrup).

For each of the NT different intensity measures, the following blocks of lines: T(J), SLA(J,0)

- T(J): Structural period of j-th spectral ordinate. It is used only for identification purposes and to plot the uniform-hazard spectrum, so in the cases in which structural period has no meaning, it can be just a sequential number.
- SLA(J,0): Standard deviation of the natural logarithm of the j-th measure of intensity. A value of SLA(J,0)<=0 implies that the user will give standard deviations that vary with magnitude. In this case, the corresponding Sigma values, one for each of the NMAG magnitudes has to be given after the table of SA() values.

5.1.3.1.2 Pre-Defined Seismic Uniform Hazard Analysis

The SHARE project probabilistic seismic hazard contour maps for Euro-Mediterranean Region has been embedded in the LIQUEFACT software, to be used as basis to ground shaking in Pre-Defined Uniform Hazard type analysis. The SHARE maps were produced for different return periods: 73 years (50% in 50 years), 102 years (39% in 50 years), 475 years (10% in 50 years), 975 years (5% in 50 years), 2475 years (2% in 50 years), 4975 years (1% in 50 years). An example of SHARE-seismic hazard map is shown in Figure 13, in terms of PGA having 10% exceedance probability in 50 years. The hazard values are referenced to a rock velocity of $V_{5,30}$ = 800 m/s at 30 m depth. SHARE models earthquakes as finite ruptures and includes all events with magnitudes MW≥4.5 in the computation of hazard values. SHARE introduces an innovative weighting scheme that reflects the importance of the input data sets

considering their time horizon, thus emphasizing the geologic knowledge for products with longer time horizons and seismological data for shorter ones.

Figure 13. Seismic hazard map depicts the 10% exceedance probability that a peak ground acceleration of a certain fraction of the gravitational acceleration g is observed within the next 50 year

5.1.3.1.3 User-Defined Seismic Hazard Analysis

User-supplied PGA and spectral acceleration contour maps, e.g. resulted from a specific local or regional seismic response analysis, represents another alternative where pre-defined ground shaking maps that were developed for specific location or regional scale.

5.1.3.2 Ground Amplification Analysis

The values of ground shaking demand obtained from the different methodologies/options described above are in general computed for rock condition, and which then amplified by factors based on local soil conditions. This can be done using one of the following alternatives:

- Use of response spectrum *Code-Design*: where Eurocode-8 spectrum types are incorporated in the LIQUEFACT software.
- Use of **Site-Specific** option which requires Vs profiles supplied by the user.

5.1.3.2.1 Ground Amplification using Code-Design

Two different types of design spectra are provided within Eurocode 8 (CEN, 2004). This is mainly done in order to account for the differing level of seismic hazard in Europe and the different earthquake types susceptible to occur. In case that earthquakes with a surface-wave magnitude Ms > 5.5 are expected, it is suggested to use Spectrum Type 1, else (Ms \leq 5.5) Type 2. The question which spectrum

type to choose for a specific region should be based upon "(...) the magnitude of earthquakes that are actually expected to occur rather than conservative upper limits defined for the purpose of probabilistic hazard assessment".

Both types of the horizontal design spectrum are defined by the following expressions:

$Sa(T) = a_g \cdot S \cdot [1 + \frac{T}{T_B} \cdot (\eta \cdot 2.5 - 1)]$	for $T < T_B$
$Sa(T) = a_g \cdot S \cdot \eta \cdot 2.5$	for $T_B < T < T_C$
$Sa(T) = a_g \cdot S \cdot \eta \cdot 2.5 \cdot [\frac{T_c}{T}]$	for $T_C < T < T_D$
$Sa(T) = a_g \cdot S \cdot \eta \cdot 2.5 \cdot [\frac{T_c \cdot T_D}{T^2}]$	for $T_D < T < 4.0 s$

where:

 a_g - design ground acceleration (here: PGA) on soil type A ground,

 T_{B} , T_{C} - corner periods of the constant spectral acceleration branch (plateau),

*T*_D - corner period defining the beginning of the constant displacement range,

S - soil amplification factor (see Error! Reference source not found.),

 η - damping correction factor (η = 1.00 for 5% viscous damping).

The shape of the design spectrum is thus determined by the corner periods, soil amplification factor, and the level of input ground motion. Both, corner periods (T_B , T_C , and T_D) as well as soil amplification factor *S* are dependent on 'ground type', which is mainly distinguished by the average shear-wave velocity of the uppermost 30 *m* ($v_{s,30}$) and hence categorized into 5 different soil classes (Table 4). Both, soil amplification factor and corner periods for the different soil classes are given in Error! Reference source not found. and Table 5 for Type 1 and Type 2 design response spectra, respectively. Figure 14 illustrates the corresponding sets of normalized elastic design response spectra.

Soil	Description of Stratigraphic profile	Shear Wave velocity
Туре		Vs,30 [m/s]
А	Rock or rock-like geological formation, incl. at most 5 m of weaker material at the surface	> 800
В	Deposits of very dense sands, gravel, or very stiff clay (at least several tens of m in	360-800
	thickness) characterized by a gradual increase of mechanical properties with depth	
С	Deep deposits of dense or medium-dense sand, gravel or stiff clay with thickness from	180–360
	several tens to many hundreds of m	
D	Deposits of loose-to-medium cohesion-less soil (with or without some soft cohesive	< 180
	layers), or of predominantly soft-to-firm cohesive soil	
E	Soil profile consisting of a surface alluvium layer with vs,30 values of type C or D and	n.a.
	thickness H varying between 5–20 m underlain by stiffer material with vs,30 > 800 m/s	

Table 4 Ground types provided by Eurocode 8 (European Committee for Standardization (CEN, 2004)

Table 5 Values of the parameters describing Eurocode 8 – Type 1 spectra (CEN, 2004)

Soil Type	Soil factor S	T _B [sec]	T _C [sec]	T _D [sec]
А	1.00	0.15	0.40	2.00
В	1.20	0.15	0.50	2.00

C	1.15	0.20	0.60	2.00
D	1.35	0.20	0.80	2.00
E	1.40	0.15	0.50	2.00

Table 6 Values of the parameters describing Eurocode 8 – Type 2 spectra (CEN, 2004)

Soil Type	Soil factor S	T _B [sec]	T _c [sec]	T _D [sec]
А	1.00	0.05	0.25	1.20
В	1.35	0.05	0.25	1.20
С	1.50	0.10	0.25	1.20
D	1.80	0.10	0.30	1.20
E	1.60	0.05	0.25	1.20

Figure 14. Eurocode-8 elastic design spectra of Type 1 and Type 2

5.1.3.2.2 Ground Amplification using Site-Specific

Site-specific elastic response spectrum can be either derived from a Scenario Earthquake or a Pre-Defined/User-Defined Seismic Hazard. In the case of Scenario Earthquake, LIQUEFACT software is using the embedded attenuation relationships to compute the corresponding ground motion estimates using average shear-wave velocity $V_{S,30}$ in order to amplify the ground motion. This $V_{S,30}$ value is user-supplied as input data. In the of Pre-Defined or User-Defined Seismic Hazard (where ground motion map is already computed in terms of PGA values and full spectral acceleration contours), the ground motion is amplified using the soil amplification factors provided by IBC-2006 (ICC, 2006) by assigning a $V_{S,30}$ value that agrees with the soil type (see Table 7).

	Shear-wave velocity V _{S,30} [m/s]			
Spectral Acceleration	> 800 360 - 800 180 - 360 < 180			
Short-Period Spectral Acceleration [g]	Short-Period Amplification Factor			
≤ 0.25	1.0	1.2	1.6	2.5
[0.25, 0.50]	1.0	1.2	1.4	1.7

Table 7 Site amplification factors modified from IBC-2006 (ICC, 2006)

[0.50, 0.75]	1.0	1.1	1.2	1.2
[0.75, 1.0]	1.0	1.0	1.1	0.9
> 1.0	1.0	1.0	1.0	0.9
1-Second Period Spectral Acceleration [g]		1-Second Period A	mplification Factor	
≤ 0.1	1.0	1.7	2.4	3.5
[0.1, 0.2]	1.0	1.6	2.0	3.2
[0.2, 0.3]	1.0	1.5	1.8	2.8
[0.3, 0.4]	1.0	1.4	1.6	2.4
> 0.4	1.0	1.3	1.5	2.4

5.1.4 Interpolation and Mapping

In the LIQUEFACT software, two types of interpolation techniques for generating seismic and liquefaction hazards and the computation of risk: *Geostatistical Interpolation* and *Deterministic Interpolation* procedures.

The implemented <u>Geostatistical Interpolation</u> is based on **Kriging** technique which utilizes the statistical properties of the measured points. Kriging technique quantify the spatial autocorrelation among measured points and account for the spatial configuration of the sample points around the prediction location.

The implemented <u>Deterministic Interpolation</u> is based on **Shepard's Weighted Average** technique. It creates surfaces from measured points, based on either the extent of similarity (inverse distance weighted) or the degree of smoothing (radial basis functions).

5.2 Risk Assessment

For risk analysis, depending on what level of analysis is chosen and output is requested, different numbers of input files have to be generated:

- Vulnerability analysis and evaluation of physical impact: directly related to vulnerability assessment and computation of damage on buildings/infrastructures
- Economic impact: evaluation of economic impact of the physical damage

5.2.1 Process for Vulnerability Analysis

For vulnerability analysis, alternatives are provided to end-users offering more flexibility in terms of type of vulnerability analysis to be conducted and type and level of details of the input data that can be available, and level of knowledge of the end-users.

5.2.2 Computation of Damage Probabilities

Users is provided with two procedures for the computation of physical damage and mean damage ratio for a given liquefaction demand:

- the newly developed Equivalent Soil Profile (ESP) based procedure,
- the Conventional procedure (which has been widely used.

5.2.2.1 ESP-based procedure

Figure 15 illustrates the general steps of the ESP-based procedure that have been integrated in the software for liquefaction risk analysis. The procedure consists of 3 main steps (Viana da Fonseca et al. 2018a):

Figure 15. General steps of the ESP-based procedure for the computation of damage and loss (Viana da Fonseca et al. 2018a)

- Step 1: is about generating an equivalent soil profile that will be used for the evaluation of liquefaction risk;

- Step 2 uses of liquefaction soil profile criteria to identify the characteristics of the equivalent soil profile considering parameters of soil strength, thickness of liquefiable layer, depth of the liquefiable layer from the surface; and
- Step 3 combines the selected building/infrastructure in terms of its typology/class with the determined equivalent soil profile class to select the associated fragility curves for the computation of physical impact and the expected losses.

In the Equivalent Soil Profile (ESP)-based procedure vulnerability model assigned to each asset is presented by 22 ESP profiles that have been developed based on the thickness level of liquefiable layer, the depth to the liquefiable layer, the level of strength of the liquefiable layer as illustrated in Table 1. The software then looks up the fragility curves that correspond to equivalent soil profile class and building typology and computes the loss.

ESP classes	Soil Resistance	Thickness of Liquefiable Layer	Thickness of Crust Layer
WLS	Weak	Large	Shallow
WLM	Weak	Large	Mid
WLD	Weak	Large	Deep
WMS	Weak	Midsize	Shallow
WMM	Weak	Midsize	Mid
WMD	Weak	Midsize	Deep
WTS	Weak	Thin	Shallow
WTM	Weak	Thin	Mid
WTD	Weak	Thin	Deep
MLS	Midium	Large	Shallow
MLM	Midium	Large	Mid
MLD	Midium	Large	Deep
MMS	Midium	Midsize	Shallow
MMM	Midium	Midsize	Mid
MMD	Midium	Midsize	Deep
MTS	Midium	Thin	Shallow
MTM	Midium	Thin	Mid
MTD	Midium	Thin	Deep
SLX	Strong	Large	
SMX	Strong	Midsize	
STX	Strong	Thin	
RXX	Resist		

Table 8 Concept of the 22 classes of Equivalent Soil Profile (ESP)

5.2.2.2 Conventional procedure

In the conventional procedure, a given building or infrastructure is represented by a single fragility model which is developed as result of a combined structural system- soil profile.

Regarding the definition of damage thresholds, options are providing regarding the *Number of Damage Limit States* that can be used in for user-supplied *Liquefaction Fragility* models. The software incorporates the following definitions for the fragility models:

- <u>Four Damage Limit States</u>: Slight Damage, Moderate Damage, Extensive Damage and Complete Damage
- <u>Three Damage Limit States</u>: Damage Limitation, Significant Damage, and Near Collapse.
- <u>Two Damage Limit States</u>: Minor Damage, and Complete Damage
- <u>One Damage Limit State</u>: Collapse

5.2.3 Engineering Demand Parameter

The type of intensity measure for the Engineering Demand Parameter (EDP) will define the procedure for the computation of demand/performance. For liquefaction vulnerability, users are provided with options in defining intensity measure for vulnerability models.

- Spectral Acceleration (Sa)
- Peak Ground Acceleration (PGA)
- Liquefaction Severity Number (LSN)
- Ground Deformation Differential Settlement (GD)

Similarly, users can define ground shaking vulnerability with options of intensity measures

- Spectral Acceleration (Sa)
- Peak Ground Acceleration (PGA)
- Spectral Displacement (Sd)

5.2.4 Computation of Mean Loss Ratio

Loss Ratio (LR), also called Damage Ratio, is defined as the cost ratio (or loss) to the value or cost of new construction for each portfolio entry and insurance type. LR to a specific building or infrastructure from a given liquefaction severity indicator or ground shaking at a given site is computed by the LIQUEFACT software using the HAZUS principles where damage probability is computed in different categories depending on number of Damage Limit States (one, two, three or four Damage Limit States) considered in the selected fragility models. LR in the LIQUEFACT software is used with weights so that it not only reflects damage, but the relative economical loss inflicted.

The weighted LR for each portfolio entry and owner and insurance losses, Building (LR_B), Contents (LR_c) and Business Interruption (LR_I), is computed from the Damage Limit States. Here is example for the case of fragility model with four Damage Limit States:

 $LR_{B} = B_{1}P_{Slight} + B_{2}P_{Moderate} + B_{3}P_{Extensive} + B_{4}P_{Complete}$

 $LR_{C} = C_{1}P_{Slight} + C_{2}P_{Moderate} + C_{3}P_{Extensive} + C_{4}P_{Complete}$

 $LR_{I} = I_{1}P_{Slight} + I_{2}P_{Moderate} + I_{3}P_{Extensive} + I_{4}P_{Complete}$

Where

 P_{None} (is Probability of no damage) + P_{Slight} (is Probability of slight damage) + $P_{Moderate}$ (is Probability of moderate damage) + $P_{Extensive}$ (is Probability of extensive damage) + $P_{Complete}$ (is Probability of complete damage) = 1.

The Mean Loss Ratio (MLR) is defined as the ratio of repair costs (or losses) to the total value, and is extensively used as a direct representation of the economic losses and in the insurance industry (e.g. Munich-RE, Swiss-RE).

$$MLR = \frac{\sum_{k} \sum_{j} N_{j}^{k} LR_{j}}{N_{T}}$$

where LR_j is the ratio of the cost for damage state j to the total value, and these values are user changeable. N_T is the total number of buildings (of same typology in a given Geo-code) and N^k_j denotes the number of buildings in damage state j and typology k.

5.3 Liquefaction Mitigation Assessment

Mitigation Analysis System incorporated in the LIQUEFACT software is based on knowledge and processes for ground improvement techniques selection. The mitigation analysis is processed as Score Rating sequences where users can develop mitigation framework customized to their case studies. Note that the system is provided for guidance only and should not be considered as it is for design decisions. Results obtained from the Mitigation Analysis should be independently cross-checked, and critically reviewed by an experienced engineer with sufficient expertise and an understanding of the underlying assumptions and limitations of the software.

5.3.1 Liquefaction Mitigation Techniques

The ground improvement technologies that have been considered in the incorporated mitigation analysis system are the most commonly ground improvement technologies in practice for liquefaction mitigation and are shown in Table 8.

Ground improvement technologies for	Earthquake drains
liquefaction mitigation	Deep dynamic compaction
	Vibro-compaction
	Blasting compaction
	Vibro-replacement
	Induced partial saturation
	Compaction grouting

Table 9 List of ground improvement technologies for liquefaction mitigation

Low pressure grouting
Jet grouting
Deep soil mixing

5.3.2 Level of Applicability and Score Rating Evaluation

The technology(s) selection process is based on applicability criteria and score rating considering the most influential factors. The first step in scoring the applicability and eliminate some ground improvement technologies is to define site conditions: if site or location of interest is a free field condition or if there are existing buildings or infrastructures. Other involved factors include soil type, stratigraphy, depth of liquefiable zone, size of area to be improved, foundation type, constrains, presence any subsurface obstructions, and environmental compatibility. Table 9 illustrates the list of the factors considered in the system, and they are classified in terms of level of importance to the applicability criteria and weighted accordingly.

Factors	Level of Importance	Weight	Relative Weight (%)
1. Site conditions	Very important	4	18.2
2. Soil type	Very important	4	18.2
3. Stratigraphy	Medium important	2	9.1
4. Depth of the treatment zone	Very important	4	18.2
5. Size of area to be improved	Less important	1	4.5
6. Foundation type	Less important	1	4.5
7. Project constrains	Medium important	2	9.1
8. Presence of subsurface obstructions	Medium important	2	9.1
9. Environmental compatibility	Medium important	2	9.1
		ΤΟΤΑΙ	100 %

Table 10 List of influential factors for ground improvement technologies selection, and classification in terms of level of importance using weighting

Table 11 Details on the factors influencing mitigation techniques applicability

Factors	Details			
1. Site conditions	Free-field or existing structure is one of the major factors that can influence			
1.1) Free field	the process of ground mitigation technologies selection, as some			
1.2) Existing buildings	technologies could damage structures.			
2. Soil type	In general, any ground improvement technologies that can effectively			
2.1) Gravel soils	improve the shear and compression resistance of liquefiable soil can be used			
2.2) Sandy soils	for liquefaction mitigation, but each remedial technology has its own suitable			
2.3) Inorganic silts, clays silts of	\neg soil type to which it should be applied (if is gravel, sandy or inorganic/clays			
low to medium plasticity	silts of low to medium plasticity).			
3. Stratigraphy	Link the suitability of ground improvement technologies to the presence or			
3.1) Soil crust	not of soil crust.			
3.2) No soil crust				
4. Depth of the treatment zone				

	-
4.1) <3 m	The suitability of ground improvement technologies is subject to the specified
4.2) 3-12 m	depth of the liquefiable soil layer. Based on extensive review and several
4.3) 12-18 m	studies the following depths have been determined for the applicability of the
4.4) 18-25 m	various ground improvement technologies.
5. Size of area to be improved	The suitability of ground improvement technologies is also subject to the size
5.1) Small (<1000 m ²)	of area to be improved. Some ranges defining the economic size associated
5.2) Medium (1000-5000 m ²)	to ground improvement technologies have been established based on case
5.3) High (>5000 m ²)	studies from literature, suggesting the followings classifications for size area:
	Small Area: indicates an area less than 1000 m2; Medium Area: indicates an
	area between 1000 and 5000 m2; High Area: indicates an area more than
	5000 m2.
6. Foundation type	The selection of foundation type allows sorting of technologies based on the
6.1) Shallow foundations	usefulness of the ground improvement technology to the specific foundation
6.2) Deep foundations	type.
7. Project constrains	The selection of project constrains allows sorting of technologies considering
7.1) Low overhead clearance	the following cases:
7.2) Adjacent structures	• <i>Low overhead clearance</i> : means there is no accessibility of the equipment to
7.3) Existing utilities	reach the site.
	•Adjacent structures: means that it may not be possible to use some
	technologies if there are structures near the site of interest (some
	technologies could damage the adjacent structures). In a such situation any
	adjacent buildings and structures must be monitored when using some
	technologies.
	• <i>Existing utilities</i> : means that a technology may be acceptable if there are
	some existing utilities, and this could strongly affect the ground improvement
	operations.
8. Presence of subsurface	Subsurface obstructions such as cobbles, boulders, or construction debris,
obstructions	water bearing sands, organic layers, and very stiff surface deposits can
	significantly impact type of ground improvement technologies that can be
	selected.
9. Environmental compatibility	Environmental constraints may include: disposal of spoils from a particular
	ground modification technology, disposal of waste materials encountered on
	the site, protection of the site from erosion, protection of surface and ground
	waters from pollution, and the effects of construction vibrations, noise and
	dust. Some ground improvement technologies such as deep mixing method
	or grouting methods can improve the in-situ ground by introducing chemicals
	or contaminates into the soils, which can be a critical environmental issue in
	some cases.

Tables below illustrates the level of applicability and score rating of ground improvement technologies (for the 10 selected technologies) considering the most influential factors listed in the table above. For each answer to a given factor, weighed score is computed as a value quantified for a given level of applicability multiplied with value quantified for level of importance of the given factor. For example, for an answer of Free-field to the site condition factor, the weighed score value of 55 is the result of 3 (quantified value for level of applicability in free field condition) multiplied with 18.2% (relative weight quantifying level of importance of the factor site condition).

Table 12 Ground improvement technologies applicability and score rating for the factor of Site Conditions

Ground Improvement Technologies	Applicability Factors	1. Site conditions	
		1.1) Free field	1.2) Existing buildings

EARTHQUAKE DRAINS	A secolita a la ilita a	Good	Good
	Applicability	3	3
	Weighed score	55	55
DEEP DYNAMIC COMPACTION	A sur line la ilite e	Good	Not Applicable
	Аррисарину	3	0
	Weighed score	55	0
VIBRO COMPACTION	A	Good	Not Applicable
	Applicability	3	0
	Weighed score	55	0
BLASTING COMPACTION	A sur line la ilite e	Good	Not Applicable
	Аррисарину	3	0
	Weighed score	55	0
VIBRO REPLACEMENT	Applicability	Good	Not Applicable
	Applicability	3	0
	Weighed score	55	0
INDUCED PARTIAL SATURATION	Applicability	Good	Good
		3	3
	Weighed score	55	55
COMPACTION GROUTING	Applicability	Good	Good
	Applicability	3	3
	Weighed score	55	55
LOW PRESSURE GROUTING	Applicability	Good	Good
	Аррисарину	3	3
	Weighed score	55	55
JET GROUTING	Applicability	Good	Medium
	Аррисаринту	3	2
	Weighed score	55	36
DEEP SOIL MIXING	Applicability	Good	Good
	Аррисаринту	3	3
	Weighed score	55	55

Table 13 Ground improvement technologies applicability and score rating for the factor of Soil Type

Ground Improvement Technologies	Applicability				
	Factors	2.1) Gravel soils	2.2) Sandy soils	2.3) Inorganic silts,	
				clays silts of low to	
				medium plasticity	
EARTHQUAKE DRAINS	Applicability	Low	Good	Low	
	Аррисарину	1	3	1	
	Weighed score	18	55	18	
DEEP DYNAMIC COMPACTION	Applicability	Medium	Good	Low	
	Аррисарину	2	3	1	
	Weighed score	36	55	18	
VIBRO COMPACTION	A muli na kilitu	Good	Good	Not Applicable	
	Аррисарину	3	3	0	
	Weighed score	55	55	0	
BLASTING COMPACTION	Applicability	Medium	Medium	Not Applicable	
	Аррисарину	2	2	0	
	Weighed score	36	36	0	
VIBRO REPLACEMENT	A multice bility (Low	Medium	Good	
	Аррисарину	1	2	3	
	Weighed score	18	36	55	
INDUCED PARTIAL SATURATION	Applicability	Medium	Good	Low	
	Аррисарину	2	3	1	
	Weighed score	36	55	18	
COMPACTION GROUTING	Applicability	Medium	Good	Low	

		2	3	1
	Weighed score	36	55	18
LOW PRESSURE GROUTING	Applicability	Good	Good	Not Applicable
	Аррисарину	3	3 3	
	Weighed score	ghed score 55 55		0
JET GROUTING	Applicability	Good	Good Good	
	Аррисарину	3	3	2
	Weighed score	55	55	36
DEEP SOIL MIXING	Applicability	Low	Medium	Good
	Аррисарину	1	2	3
	Weighed score	18	36	55

Table 14 Ground improvement technologies applicability and score rating for the factor of Stratigraphy

Ground Improvement Technologies	Applicability Factors	3	. Stratigraphy
		3.1) Soil crust	3.2) No soil crust
EARTHQUAKE DRAINS	A mun line la ilita u	Good	Medium
	Аррисаринту	3	2
	Weighed score	27	18
DEEP DYNAMIC COMPACTION	A muslime le ilitere	Low	Good
	Аррисаринту	1	3
	Weighed score	9	27
VIBRO COMPACTION	A muslime le ilitere	Medium	Good
	Аррисаринсу	2	3
	Weighed score	18	27
BLASTING COMPACTION	Applicability	Low	Good
	Аррисаринту	1	3
	Weighed score	9	27
VIBRO REPLACEMENT	Applicability	Low	Good
	Аррисаринту	1	3
	Weighed score	9	27
INDUCED PARTIAL SATURATION	Applicability	Good	Good
	Аррисаринсу	3	3
	Weighed score	27	27
COMPACTION GROUTING	Applicability	Good	Good
	Аррисаринсу	3	3
	Weighed score	27	27
LOW PRESSURE GROUTING	Applicability	Good	Good
	Аррисаринту	3	3
	Weighed score	27	27
JET GROUTING	Applicability	Good	Good
	Аррисаринсу	3	3
	Weighed score	27	27
DEEP SOIL MIXING	Applicability	Good	Good
	Аррисаршиу	3	3
	Weighed score	27	27

Table 15 Ground improvement technologies applicability and score rating for the factor of Depth of the treatment zone

Ground Improvement Technologies	Applicability Factors	4. Depth of the treatment zone						
		4.1) <3 m	4.2) 3-12	4.3) 12-18 m	4.4) 18-25 m			
			m					
EARTHQUAKE DRAINS	Applicability	Low	Good	Good	Good			
	Аррисарину	1	3	3	3			
	Weighed score	18	55	55	55			

DEEP DYNAMIC COMPACTION	Applicability	Good	Good	Medium	Low
	Аррисарину	3	3	2	1
	Weighed score	55	55	36	18
VIBRO COMPACTION	Applicability	Good	Good Good		Low
	Аррисаринту	3	3	2	1
	Weighed score	55	55	36	18
BLASTING COMPACTION	Applicability	Medium	Good	Medium	Not Applicable
	Аррисаринсу	2	3	2	0
	Weighed score	36	55	36	0
VIBRO REPLACEMENT	Applicability	Good	Good	Medium	Low
	Аррисаринту	3	3	2	1
	Weighed score	55	55	36	18
INDUCED PARTIAL SATURATION	Amelianhilitu	Medium	Good	Good	Good
	Аррисаринту	2	3	3	3
	Weighed score	36	55	55	55
COMPACTION GROUTING	Applicability	Medium	Good	Good	Low
	Аррисаринту	2	3	3	1
	Weighed score	36	55	55	18
LOW PRESSURE GROUTING	Applicability	Good	Good	Good	Good
	Аррисаринту	3	3	3	3
	Weighed score	55	55	55	55
JET GROUTING	Applicability	Medium	Good	Good	Good
	Аррисаринту	2	3	3	3
	Weighed score	36	55	55	55
DEEP SOIL MIXING	Applicability	Medium	Good	Good	Medium
	Аррисаринсу	2	3	3	2
	Weighed score	36	55	55	36

Table 16 Ground improvement technologies applicability and score rating for the factor of Size of area to be improved

Ground Improvement Technologies	Applicability	5. Size of area to be improved						
	Factors	Factors 5.1) Small (<1000 5		5.3) High (>5000 m2)				
		m2)	(1000-5000 m2)					
EARTHQUAKE DRAINS	Applicability	Good	Good	Good				
	Аррисарину	3	3	3				
	Weighed score	14	14	14				
DEEP DYNAMIC COMPACTION	Applicability	Good	Good	Good				
	Аррисаринту	3	3	3				
	Weighed score	14	14	14				
VIBRO COMPACTION	A muli na hilitu i	Good	Good	Good				
	Аррисарину	3	3	3				
	Weighed score	14	14	14				
BLASTING COMPACTION	Applicability	Medium	Medium	Good				
	Аррисарину	2	2	3				
	Weighed score	9	9	14				
VIBRO REPLACEMENT	Applicability	Good	Good	Good				
	Аррисаринту	3	3	3				
	Weighed score	14	14	14				
INDUCED PARTIAL SATURATION	Applicability	Good	Good	Good				
	Аррисаринту	3	3	3				
	Weighed score	14	14	14				
COMPACTION GROUTING	Applicability	Good	Good	Good				
	Аррисаринту	3	3	3				
	Weighed score	14	14	14				
LOW PRESSURE GROUTING	Applicability	Good	Good	Good				

		3	3	3	
	Weighed score	14	14	14	
JET GROUTING	Applicability	Good	Good	Good	
	Applicability	3	3	3	
	Weighed score	14	14	14	
DEEP SOIL MIXING	Applicability	Good	Good	Good	
	Аррисарину	3	3	3	
	Weighed score	14	14	14	

Table 17 Ground improvement technologies applicability and score rating for the factor of Foundation Type

Ground Improvement Technologies	Applicability Factors	6. Foundation Type		
		6.1) Shallow	6.2) Deep foundations	
		foundations		
EARTHQUAKE DRAINS	Applicability	Good	Good	
	Аррисаринсу	3	3	
	Weighed score	14	14	
DEEP DYNAMIC COMPACTION	Applicability	Not Applicable	Not Applicable	
	Аррисаринсу	0	0	
	Weighed score	0	0	
VIBRO COMPACTION	Applicability	Good	Low	
	Аррисаринту	3	1	
	Weighed score	14	5	
BLASTING COMPACTION	A secold as he that a	Not Applicable	Not Applicable	
	Аррисарииту	0	0	
	Weighed score	0	0	
VIBRO REPLACEMENT	A see line le ilite a	Good	Not Applicable	
	Аррисарину	3	0	
	Weighed score	14	0	
INDUCED PARTIAL SATURATION	A mus line la ilita a	Good	Good	
	Аррисаринсу	3	3	
	Weighed score	14	14	
COMPACTION GROUTING	Applicability	Good	Low	
	Аррисаринсу	3	1	
	Weighed score	14	5	
LOW PRESSURE GROUTING	Applicability	Good	Good	
	Аррисаринсу	3	3	
	Weighed score	14	14	
JET GROUTING	Applicability	Good	Medium	
	Аррисарину	3	2	
	Weighed score	14	9	
DEEP SOIL MIXING	Applicability	Good	Good	
	Аррисарину	3	3	
	Weighed score	14	14	

Table 18 Ground improvement technologies applicability and score rating for the factor of Project constrains

Ground Improvement Technologies	Applicability	cability 7. Project constrains					
	Factors	7.1) Low overhead	7.2) Adjacent	7.3) Existing			
		clearance	structures	utilities			
EARTHQUAKE DRAINS	Applicability	Not Applicable	Good	Low			
	Applicability	0	3	1			
	Weighed score	0	27	9			
DEEP DYNAMIC COMPACTION	Applicability	Not Applicable	Not Applicable	Not Applicable			
	Applicability	0	0	0			

	Weighed score	0	0	0	
VIBRO COMPACTION	A muli na kilitu i	Low	Not Applicable	Low	
	Аррисарину	1	0	1	
	Weighed score	9	0	9	
BLASTING COMPACTION	Applicability	Not Applicable	Not Applicable	Not Applicable	
	Applicability	0	0	0	
	Weighed score	0	0	0	
VIBRO REPLACEMENT	Applicability	Low	Not Applicable	Low	
	Applicability	1	0	1	
	Weighed score	9	0	9	
INDUCED PARTIAL SATURATION	Applicability	Good	Good	Good	
	Аррисарину	3	3	3	
	Weighed score	27	27	27	
COMPACTION GROUTING	Applicability	Medium	Good	Medium	
	Аррисарину	2	3	2	
	Weighed score	18	27	18	
LOW PRESSURE GROUTING	Applicability	Good	Good	Good	
	Applicability	3	3	3	
	Weighed score	27	27	27	
JET GROUTING	Applicability	Low	Medium	Low	
	Applicability	1	2	1	
	Weighed score	9	18	9	
DEEP SOIL MIXING	Applicability	Not Applicable	Good	Medium	
	Аррисаршиу	0	3	2	
	Weighed score	0	27	18	

Table 19	Ground	improvement	technologies	applicability	and	score	rating	for	the	factor	of	Presence	of	subsurface
	obstructi	ions and Enviro	nmental comp	oatibility										

Ground Improvement Technologies	Applicability Factors	9. Environmental		
		subsurface obstructions	compatibility	
EARTHQUAKE DRAINS	Anniarhilith	Low	Good	
	Аррисарину	1	3	
	Weighed score	9	27	
DEEP DYNAMIC COMPACTION	Applicability	Not Applicable	Good	
	Аррисаринту	0	3	
	Weighed score	0	27	
VIBRO COMPACTION	Applicability	Not Applicable	Good	
	Аррисарину	0	3	
	Weighed score	0	27	
BLASTING COMPACTION	Applicability	Not Applicable	Not Applicable	
	Аррисаринту	0	0	
	Weighed score	0	0	
VIBRO REPLACEMENT	VIBRO REPLACEMENT		Low	
	Аррисаринту	0	1	
	Weighed score	0	9	
INDUCED PARTIAL SATURATION	Applicability	Good	Good	
	Аррисаринту	3	3	
	Weighed score	27	27	
COMPACTION GROUTING	Applicability	Low	Good	
	Аррисаринту	1	3	
	Weighed score	9	27	
LOW PRESSURE GROUTING	Applicability	Good	Low	
	Аррисариису	3	1	
	Weighed score	27	9	

LIQUEFACT Deliverable 6.6 LIQUEFACT Software – Technical Manual and Application v. 1.0

JET GROUTING	A mun linn hailithe	Low	Medium				
	Аррисарницу	1	2				
	Weighed score	9	18				
DEEP SOIL MIXING	Applicability	Medium	Good				
	Applicability	2	3				
	Weighed score	18	27				

LIQUEFACT Deliverable 6.6 LIQUEFACT Software – Technical Manual and Application v. 1.0

Table 20 Concept for the evaluation of overall score rating for selection of mitigation technologies considering the most influential factors of applicability

LEGEND									
APPLICABILITY	Good	3							
	Medium	2							
	Low	1							
	Not applicable	0							
WEIGHT	Very important	4							
	Important	3							
	Medium important	2							
	Less important	1							
	Not applicable	0							

Question		Weight	Relative weight	e EARTHQUAKE DRAIN		DEEP DYNAMIC COMPACTION		VIBRO COMPACTION		BLASTING COMPACTION		VIBRO REPLACEMENT		INDUCED PARTIAL SATURATION		COMPACTION GROUTING		LOW PRESSURE GROUTING		JET GROUTING		DEEP SOIL MIXING	
			(%)	Applicability	Weighed score	Applicability	Weighed score	Applicability	Weighed score	Applicability	Weighed score	Applicability	Weighed score	Applicability	Weighed score	Applicability	Weighed score	Applicability	Weighed score	Applicability	Weighed score	Applicability	Weighed score
1. Site conditions	1.1) Free field	4	18.2	3	55	3	55	3	55	3	55	3	55	3	55	3	55	3	55	3	55	3	55
	1.2) Existing buildings	4	10.2	3	55	0	0	0	0	0	0	0	0	3	55	3	55	3	55	2	36	3	55
	2.1) Gravel soils			1	18	2	36	3	55	2	36	1	18	2	36	2	36	3	55	3	55	1	18
	2.2) Sandy soils		10.0	3	55	3	55	3	55	2	36	2	36	3	55	3	55	3	55	3	55	2	36
2. Soil type 2.3) In of low	2.3) Inorganic silts, clays silts of low to medium plasticity	4	18.2	1	18	1	18	0	0	0	0	3	55	1	18	1	18	0	0	2	36	3	55
3. Stratigraphy	3.1) Soil crust			3	27	1	9	2	18	1	9	1	9	3	27	3	27	3	27	3	27	3	27
	3.2) No soil crust	2 9.1	9.1	2	18	3	27	3	27	3	27	3	27	3	27	3	27	3	27	3	27	3	27
	4.1) <3 m			1	18	3	55	3	55	2	36	3	55	2	36	2	36	3	55	2	36	2	36
4. Depth of the treatment zone	4.2) 3-12 m	4	18.2	3	55	3	55	3	55	3	55	3	55	3	55	3	55	3	55	3	55	3	55
(based on case histories)	4.3) 12-18 m		10.1	3	55	2	36	2	36	2	36	2	36	3	55	3	55	3	55	3	55	3	55
	4.4) 18-25 m			3	55	1	18	1	18	0	0	1	18	3	55	1	18	3	55	3	55	2	36
	5.1) Small (<1000 m ²)			3	14	3	14	3	14	2	9	3	14	3	14	3	14	3	14	3	14	3	14
5. Size of area to be improved	5.2) Medium (1000-5000 m ²)	1	4.5	3	14	3	14	3	14	2	9	3	14	3	14	3	14	3	14	3	14	3	14
	5.3) High (>5000 m ²)			3	14	3	14	3	14	3	14	3	14	3	14	3	14	3	14	3	14	3	14
6. Foundation type	6.1) Shallow foundations	1	45	3	14	0	0	3	14	0	0	3	14	3	14	3	14	3	14	3	14	3	14
	6.2) Deep foundations	-	1.5	3	14	0	0	1	5	0	0	0	0	3	14	1	5	3	14	2	9	3	14
7. Project constrains	7.1) Low overhead clearance			0	0	0	0	1	9	0	0	1	9	3	27	2	18	3	27	1	9	0	0
	7.2) Adjacent structures	2	9.1	3	27	0	0	0	0	0	0	0	0	3	27	3	27	3	27	2	18	3	27
	7.3) Existing utilities		1	1	9	0	0	1	9	0	0	1	9	3	27	2	18	3	27	1	9	2	18
8. Presence of subsurface obstructions 2		2	9.1	1	9	0	0	0	0	0	0	0	0	3	27	1	9	3	27	1	9	2	18
9. Environmental compatibility		2	9.1	3	27	3	27	3	27	0	0	1	9	3	27	3	27	1	9	2	18	3	27
Total 100.0																							

5.3.3 Cost-Benefit Analaysis

5.3.3.1 Cost-Benefit Ratio (CBR)

Cost-benefit assessment provides a tool for comparing the costs of a given mitigation strategy to the benefits that can be achieved (Liel and Deierlein 2013). By explicitly quantifying the relationship between mitigation effectiveness and its costs, these assessments facilitate effective decision making for investment in liquefaction risk safety.

$$CBR = \frac{Mitigation \ Cost \ (MC)}{Expected \ benefit \ (EB)}$$

Cost-benefit ratios less than unity indicate favourable conditions where the benefits outweigh the costs

5.3.3.2 Expected Benefit (EB)

The *Expected Benefit (EB)* of a given mitigation action over the building's remaining lifespan is given by:

$$EB = (EAL_I - EAL_M) \cdot \sum_{t=1}^{T} (1+r)^t$$

- EAL₁: is the Expected Annual Losses before a mitigation strategy is implemented
- EAL_M: is the Expected Annual Losses after a mitigation strategy is implemented
- *r* is constant discount rate: is determined from interest rates and adjusted for inflammation, and traditionally ranges from 2% to 6%.
- T: is remaining building life of 50 years

5.3.3.3 Expected Annual Loss (EAL)

Expected Annual Loss (EAL) represents the estimated losses, in terms of an average yearly amount, associated with liquefaction mitigation and reducing building vulnerability to liquefaction risk, considering the frequency and severity of possible future earthquake-induced liquefaction represented by the seismic and liquefaction hazard at the site of interest.

EAL is obtained by combining the *Expected Losses* E[L|im] associated with the damage and nondamage states of the building/infrastructure asset, integrated overall ground-motion/liquefaction intensities.

$$EAL = \int_{IM=0}^{\infty} E[L|im] \cdot \lambda_{IM}$$

6 REFERENCES

Bartolucci, A. and Jones, K. (2016). Deliverable D1.4 Detailed user requirements and research output protocols for the LIQUEFACT Reference Guide. LIQUEFACT Project.

Bennet, J. (2010) 'OpenStreetMap', Packt publishing, Birmingham.

Boulanger, R.W., Idriss, I.M., 2014. "CPT and SPT based liquefaction triggering procedures". Department of Civil and Environmental engineering, University of California at Davis.

Boulanger, R.W., and Idriss, I.M. 2015. "CPT-based liquefaction triggering procedure". Journal of Geotechnical and Geoenvironmental Engineering, 142(2), p.04015065

Boulanger, R., Ziotopoulou, K. 2012. "PM4Sand (Version 2): a sand plasticity model for earthquake engineering applications". Report no. UCD/CGM-12/01, center for Geotechnical Modeling.

Boulanger, R.W., and Ziotopoulou, K. 2015. "PM4Sand (Version 3): A Sand Plasticity Model for Earthquake Engineering Applications". Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, California, Report no. UCD/CGM-15/01, pp. 70-76.

Boulanger, R.W. and Idriss, I.M. 2016. "CPT- Based Liquefaction Triggering Procedures". Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015065.

Bradley, B.A., Lee, D.S., Broughton, R., and Price, C. 2009. "Efficient evaluation of performance-based earthquake engineering equations". Structural Safety, 31, 65–74.

Bradley, B., 2013. "Ground motion selection for seismic risk analysis of civil infrastructure". Handbook of seismic risk analysis and management of civil infrastructure systems, S. Tesfamariam and K. Goda editors, Woodhead Publishing Limited, pp. 79-112.

Bray, J.D., Rathje, E.M., Augello, A.J., and Merry, S.M. 1998. "Simplified seismic design procedure for geosynthetic-lined, solid waste landfills". Geosynthetics International, 5(1-2): 203-235.

Bray, J.D. and Macedo, J. (2017). 6th Ishihara lecture: Simplified procedure for estimating liquefaction induced building settlement. Soil Dynamics and Earthquake Engineering, 102: 215–231. http://dx.doi.org/10.1016/j.soildyn.2017.08.026

CEN (2004a). EN 1998-1, Eurocode 8—design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels.

CEN (2004b). EN 1998-5, Eurocode 8—design of structures for earthquake resistance, part 5: Foundations, retaining structures and geotechnical aspects. European Committee for Standardization, Brussels.

Dickenson, S. 2005. "Recommended guidelines for liquefaction evaluations using ground motions from probabilistic seismic hazard analyses". Report to the Oregon Department of Transportation, June 2005, 93 pp.

El Mohtar C.S., Bobet, A., Santagata, M.C., Drnevich V.P., Johnston C.T., 2013, Liquefaction Mitigation Using Bentonite Suspensions, Journal of Geotechnical and Geoenvironmental Engineering, 139 (8).

Fotopoulou et al. 2018. Vulnerability assessment of low-code reinforced concrete frame buildings subjected to liquefaction-induced differential displacements. Soil Dynamics and Earthquake Engineering 110 (2018) 173–184.

Gerace, A. 2018. "Equivalent simplified soil profiles for liquefaction assessment". MSc Thesis, University of Porto (FEUP).

Grunthal, G., Wahlstro, R. 2013. "The SHARE European earthquake catalogue (SHEEC) for the time period 1900-2006 and its comparison to the European-Mediterranean earthquake catalogue (EMEC)". Journal of seismology 17: 1339-1344.

Giuseppe Modoni, Rose Line Spacagna, Luca Paolella, Alessandro Rasulo, Keith Jones, Maria Antonietta Morga, Carlo Lai, Francesca Bozzoni, Cludia Meisina, António Viana da Fonseca, Maxim Millen, Sara Rios, Cristiana Ferreira, Mirko Kosič, Matjaž Dolšek, Janko Logar, Sadik Oztoprak, Ilknur Bozbey, Kubilay Kelesoglu, Ferhat Ozcep, Alessandro Flora, Emilio Bilotta, Vincenzo Fioravante, Abdelghani Meslem (2019). Deliverable D7.1. Manual for the assessment of liquefaction risk, defining the procedures to create the database, collect, define, symbolize and store information in the Georeferenced Information System and to perform and represent the risk analysis. LIQUEFACT Project.

Idriss, I. M. 1999. "An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential". Proceedings, TRB Workshop on New Approaches to Liquefaction, Publication No. FHWARD- 99-165, Federal Highway Administration, January.

Idriss, I. M., and Boulanger, R. W. 2008. "Soil liquefaction during earthquakes". Monograph MNO-12, Earthquake Engineering Research Institute, Oakland, CA, 261 pp.

Idriss, I.M., Boulanger, R.W. 2010. "SPT-based liquefaction triggering procedure". Report # UCD/CGM-10/02 of the Center for Geotechnical Modeling, 259 pp.

Ishihara, K. 1985. "Stability of Natural Deposits During Earthquakes". Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1:321-376.

Iwasaki, T., Tatsuoka, F., Tokida, K., Yasuda, S. 1978. "A Practical method for assessing soil liquefaction potential based on case studies at various sites in Japan". [conference]: 2nd International conference on Microzonation. - 1978: 885-896.

Kramer, S.L. 1996. "Geotechnical Earthquake Engineering". Prentice Hall Publishers, 653 p.

Kramer, S. L. and Elgamal, A. W. 2001. "Modeling soil liquefaction hazards for performance-based earthquake engineering". PEER Report 2001/13.

Kramer, S.L. and Wang, C. H. 2015. "Empirical Model for Estimation of the Residual Strength of Liquefied Soil". Journal of Geotechnical and Geoenvironmental Engineering 141(9), May 2015.

Lai, C.G., Meisina, C., Persichillo, P., Famà, A., Bozzoni, F. and Cosentini, R. (2017). Deliverable D2.2 GIS platform including data for liquefaction hazard assessment in Europe. LIQUEFACT Project.

Carlo G. Lai, Claudia Meisina, Francesca Bozzoni, Daniele Conca, Roberta Bonì (2019). Deliverable D2.6. Report to describe the adopted procedure for the development of the European liquefaction hazard map LIQUEFACT Project.

Carlo G. Lai, Claudia Meisina, Francesca Bozzoni, Daniele Conca, Antonino Famà, Ali G. Özcebe, Elisa Zuccolo, Roberta Bonì, Valerio Poggi, Renato M. Cosentini, António Viana da Fonseca, Cristiana Ferreira, Cláudia Coelho, João Coelho, Julieth Quintero, Sara Rios, Maxim Millen, Diana Cordeiro, Sadik Oztoprak, Ilknur Bozbey, Cihan Oser, Sinan Sargin, Namık Aysal, Ferhat Ozcep, M. Kubilay Kelesoglu, Matej Maček, Aleš Oblak, Dušan Petrovič, Mirko Kosič, Jasna Smolar, Sebastjan Kuder, Janko Loga (2019). Deliverable D2.7. Report to describe the adopted procedure for the development of the European liquefaction hazard map LIQUEFACT Project.

Lai, C.G., Meisina, C., Persichillo, P., Famà, A., Bozzoni, F. and Cosentini, R. (2017). Deliverable D2.2 GIS platform including data for liquefaction hazard assessment in Europe (version 1). LIQUEFACT Project.

Lee Zhi Eng, (2018) 'C++ GUI Programming with QT5', PACKT publishing.

Liel, A.B., and Deierlein, G.G. (2013). Cost-benefit evaluation of seismic risk mitigation alternatives for older concrete frame buildings. Earthquake Spectra. Vol.29(4). 1391-1411.

Loeliger, J. and McCullough, M. (2012) 'Version Contol with Git: Powerful tools and techniques for collaborative software development', Second Edition, O'REILLY, ISBN-13: 978-1449316389.

Meslem, A., Lang, D., and Iversen, H. (2017). LRG Software Toolbox for Liquefaction Mitigation Planning and Decision Support (version1). Deliverable D6.1, LIQUEFACT Project.

Meslem, A., Iversen, H. Lang, D., Kaschwich, T. and Drange, L.S. (2019). The LRG Software for liquefaction mitigation planning and decision support, IABSE Symposium 2019 Guimarães, Towards a Resilient Built Environment - Risk and Asset Management, March 27-29, 2019, Guimarães, Portugal.

Meslem, A., Iversen, H. Lang, D., Kaschwich, T. and Drange, L.S. (2019). A high-performance computational platform to assess liquefaction-induced damage at critical structures and infrastructures, 7th International Conference on Earthquake Geotechnical Engineering, Rome, Italy.

Meslem, A., Lang, D., and Iversen, H. (2017). LRG Software Toolbox for Liquefaction Mitigation Planning and Decision Support (version1). Deliverable D6.1, LIQUEFACT Project.

Meslem, A., Iversen, H. Lang, D., Kaschwich, T. and Drange, L.S. (2019). The LRG Software for liquefaction mitigation planning and decision support, IABSE Symposium 2019 Guimarães, Towards a Resilient Built Environment - Risk and Asset Management, March 27-29, 2019, Guimarães, Portugal.

Meslem, A., Iversen, H. Lang, D., Kaschwich, T. and Drange, L.S. (2019). A high-performance computational platform to assess liquefaction-induced damage at critical structures and infrastructures, 7th International Conference on Earthquake Geotechnical Engineering, Rome, Italy.

Meslem, A., Iversen, H. Lang, D., Kaschwich, T., Drange, L.S. and Iranpour, K. (2019). Software Toolbox Development – Integration of Procedure for Liquefaction Vulnerability Analysis (version1). Deliverable D6.3, LIQUEFACT Project.

Mian, J. F., Kontoe, S., Free, M. 2013. "Assessing and managing risk of earthquake-induced liquefaction to civil infrastructure". Handbook of seismic risk analysis and management of civil infrastructure systems, S. Tesfamariam and K. Goda Editors, 2013, Woodhead Publishing Limited, 113-138.

Millen, M., Ferreira, C., Quintero, J., Gerace, A. and Viana da Fonseca, A. 2019. "Simplified equivalent soil profiles based on liquefaction performance". 7th International Conference on Earthquake Geotechnical Engineering. Rome, Italy.

Oblak, A., Kuder, Logar, J. & Viana da Fonseca, A (2019) Numerical assessment of fragility curves for embankments on liquefiable ground, Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering-2019, ISBN 978-9935-9436-1-3. doi: 17ecsmge-2019-Y-XXXX.

Seed, H.B., and Idriss, I.M. 1971. "Simplified procedure for evaluating soil liquefaction potential". Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM9): 1249–1273.

Seed, H. B., and Idriss, I. M. 1982. "Ground Motions and Soil Liquefaction During Earthquakes". Earthquake Engineering Research Institute, Oakland, California, Monograph Series, p. 13.

Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. 1985. "Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations". Journal of Geotechnical Engineering, American Society of Civil Engineers, vol. 111, no. 12, p. 1425-1445

Van Ballegooy, S., Malan, P., Lacrosse, V., Jacka, M.E., Cubrinovski, M., Bray, J.D., O'Rourke, T.D., Crawford, S.A., Cowan, H. 2014. "Assessment of Liquefaction-Induced Land Damage for Residential Christchurch". Earthquake Spectra (30) No. 1: pages 31–55, February 2014.

Viana da Fonseca, A., Millen, M., Gómez-Martinez, F., Romão, X., Quintero, J., Gómez, F., Costa, P., Rios, S., Kosič, M., Dolšek, M., Logar, J., Oztoprak, S., Bozbey, I., Kelesoglu, K., Ozcep, F., Flora, A., Rasulo, A., Modoni, G. & Croce, P. (2017). State of the art review of numerical modelling strategies to simulate liquefaction-induced structural damage and of uncertain/random factors on the behaviour of liquefiable soils. Deliverable D3.1, LIQUEFACT Project.

António Viana da Fonseca, Maxim Millen, Xavier Romão, Julieth Quintero, Sara Rios, Cristiana Ferreira, Fabrizio Panico, Carlos Azeredo, Nuno Pereira Janko Logar, Aleš Oblak, Matjaž Dolšek, Mirko Kosič, Sebastjan Kuder, Matej Logar, Sadik Oztoprak, M. Kubilay Kelesoglu, Sinan Sargin, Cihan Oser, Ilknur Bozbey, Alessandro Flora, Emilio Billota, Andrea Prota, Marco Di Ludovico, Anna Chiaradonna, Giuseppe Modoni, Luca Paolella, Rose Line Spacagna, Carlo G. Lai, Simantini Shinde, Francesca Bozzoni (2018). Methodology for the liquefaction fragility analysis of critical structures and infrastructures: description and case studies. Deliverable D3.2, LIQUEFACT Project.

António Viana da Fonseca, Maxim Millen, Xavier Romão, Julieth Quintero, Sara Rios and Abdelghani Meslem. (2018) Design guidelines for the application of soil characterisation and liquefaction risk assessment protocols. Deliverable D3.3, LIQUEFACT Project.

Rischplater, R. (2014) 'Application Development with Qt Creator', Second Edition, PACKT publishing, ISBN-13: 978-1784398675.

M.K., Sargin, S., Oser, C., Bozbey, I., Flora, A., Billota, E., Prota, A., Di Ludovico, M., Chiaradonna, A., Modoni, G., Paolella, L., Spacagna, R.L., Lai, C.G., Shinde, S. & Bozzoni, F. (2018). Methodology for the liquefaction fragility analysis of critical structures and infrastructures: description and case studies. Deliverable D3.2, LIQUEFACT Project.

Stroustrup, S. (2012) 'The C++ Programming Language', 4th edition, ISO/IEC 14882:2011.

Viana da Fonseca, A., Millen, M., Romão, X., Quintero, J., Rios, S. and Meslem, A. (2018). Design guidelines for the application of soil characterisation and liquefaction risk assessment protocols. Deliverable D3.3, LIQUEFACT Project.

Rischplater, R. (2014) 'Application Development with Qt Creator', Second Edition, PACKT publishing, ISBN-13: 978-1784398675.

Stroustrup, S. (2012) 'The C++ Programming Language', 4th edition, ISO/IEC 14882:2011.

Youd, T.L., Hansen, C.M., Bartlett, S.F. 2002. "Revised multilinear regression equations for prediction of lateral spread displacement". ASCE J Geotech Geoenvironmental Engineering, 28(12), pp.1007–1017.

Youd, T.L., Perkins, DM., "Mapping of liquefaction severity index". ASCE J Geotech Eng 1987;113(11):1374–92.

Youd, T. L., and Perkins, D. M. 1978. "Mapping Liquefaction-induced Ground Failure Potential". J. Geotech. Eng. Div., ASC E, 104, 433–446pp.

Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, L., Harder, L. F. J., Hynes, M. E., Ishihara, K., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., & Stokoe, K. H., 2001. "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils". Journal of Geotechnical and Geoenvironmental Engineering, 1–17.

Youd, T.L., Carter, B.L., 2005. "Influence of soil softening and liquefaction on spectral acceleration". Journal of Geotechnical and Geoenvironmental Engineering, 131-7, July 2005, pp.811-825.