

LIQUEFACT

Assessment and mitigation of Liquefaction potential across Europe: a holistic approach to protect structures/infrastructure for improved resilience to earthquake-induced Liquefaction disasters.

H2020-DRA-2015

GA no. 700748

DELIVERABLE D2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information

Author(s):	Carlo G. Lai, Francesca Bozzoni, Mauro C. De Marco, Elisa Zuccolo, Sara Bandera, Giulia Mazzocchi
Responsible Partner:	Università degli Studi di Pavia/Eucentre
Version:	1.0
Date:	31/10/2018
Distribution Level (CO, PU)	СО

DOCUMENT REVISION HISTORY

Date	Version	Editor	Comments	Status
31/10/2018	1	UNIPV/Eucentre: Carlo G. Lai, Francesca Bozzoni, Mauro C. De Marco, Elisa Zuccolo, Sara Bandera, Giulia Mazzocchi	First Draft	Draft

LIST OF PARTNERS

Partecipant	Name	Country
UNIPV/Eucentre	Università degli Studi di Pavia/Eucentre	Italy

GLOSSARY

Acronym	Description
GIS	Geographical Information System
Mw	Moment magnitude
Ms	Surface-wave magnitude
Me	Magnitude derived from the intensity points distribution
Repi	Epicentral distance
Rhyp	Hypocentral distance
Rf	Fault distance
Vs ₃₀	Average shear-wave velocity in the upper 30 m of subsoil
PGA	Peak Ground Acceleration (at free surface)
GMPE	Ground motion prediction equation
EC8	Eurocode 8 (2003)
ю	Macroseismic intensity
MCS	Mercalli-Cancani-Sieberg scale

CONTENTS

1.	INTF	ODUCTION AND PURPOSE OF THIS DOCUMENT	8
2.	GIS-	BASED CATALOGUE OF MANIFESTATIONS OF EARTHQUAKE-INDUCED LIQUEFACTION IN EUROPE.	9
2	2.1	Building the catalogue of liquefaction cases in Europe	9
	2.1.1	Review of the available catalogues for Italy, Portugal and Aegean territory	9
	2.1.2	2 Collection of liquefaction manifestations occurred in Europe 1	1
	2.1.3	Open issue: the completeness of the catalogue 1	18
2	.2	The European catalogue of liquefaction manifestations (Version 1.1) 1	۱9
	2.2.1	Structure of the GIS-based catalogue1	۱9
	2.2.2	2 Definition of the return period associated to the seismic events in the catalogue	21
3.	EUR	OPEAN REGRESSIONS TO PREDICT LIQUEFACTION OCCURRENCE STARTING FROM THE MAIN	
SEIS	SMOL	DGICAL INFORMATION OF AN EARTHQUAKE 2	22
3	.1	State of the art 2	22
	3.1.1	Early studies on functional form linking quake magnitude and liquefaction distance	22
	3.1.2	2 Bibliographic review of empirical magnitude-distance correlations for liquefaction	23
	3.1.3	Most recent insights on earthquake parameters thresholds for liquefaction triggering 2	29
3	.2	Novel correlations based on the European catalogue of liquefaction cases	30
	3.2.1	Empirical correlations of moment magnitude versus epicentral distance	30
	3.2.2	Empirical correlations of moment magnitude versus hypocentral distance	32
	3.2.3	Comparison between novel and literature correlations	35
	3.2.4	Empirical correlations for different types of liquefaction manifestations	36
	3.2.5	Empirical correlations in terms of earthquake magnitude-depth-epicentral distance	37
3	.3	Computation of novel magnitude-distance correlations taking into account the uncertainties 3	39
3	.4	Contributions towards the definition of a peak acceleration threshold for soil liquefaction 4	12
4.	CON	CLUDING REMARKS	13
REF	EREN	CES 4	14
ANI	NEX	5	51

LIST OF FIGURES AND TABLE

FIGURES

Figure 2-1 Distribution map of liquefaction cases reported in Galli (2000). Inset A is a particular concerning the 1783 Calabrian earthquakes. Bold lines represent the possibly seismogenetic faults of the three main events (large circles, from south to north: February 5 and 7, and March 28)

Figure 2-2 Map showing the distribution of historical liquefaction occurrences in Portugal (Jorge, 1994)

Figure 2-3 Map showing the distribution of historical liquefaction occurrences in the broader Aegean region (Papathanassiou and Pavlides, 2009)

Figure 2-4 Map showing the distribution of the liquefaction occurrences included in the European catalogue built in this study

Figure 2-5 Map showing the distribution of liquefaction occurrences (red dots) induced by earthquakes (yellow stars) occurred in Italy included in the catalogue built in this study

Figure 2-6 Map showing the distribution of liquefaction occurrences (red dots) induced by earthquakes (yellow stars) occurred in Eastern Europe included in the catalogue built in this study. The map in b) is a zoom on Turkey

Figure 2-7 Map showing the distribution of liquefaction occurrences (red dots) induced by earthquakes (yellow stars) occurred in Western Europe included in the catalogue built in this study

Figure 2-8 Liquefaction in Cephalonia earthquake 2014, Greece (Valkaniotis et al., 2014)

Figure 2-9 Liquefaction during Kraljevo earthquake 2010, Serbia (Dragojevic et al., 2011)

Figure 2-10 Dug up sand volcano, Kecskemet 1911, Hungary (Gyori, 2015)

Figure 2-11 Overturned building due to liquefied foundation, Izmit, Turkey 1999 (Erdik et al., 1999)

Figure 2-12 Sand boils in Dajc village, Albania, Montenegro earthquake 1977 (Kociu, 2004)

Figure 2-13 Liquefaction and lateral spreading during 2011 Van earthquake, Turkey (Karakas et al., 2013)

Figure 2-14 Liquefaction manifestations during 2012 Emilia earthquake, Italy (Bozzoni et al., 2012; Lai et al., 2015) in at San Carlo village: sand boils (A) and lateral spreading (B)

Figure 2-15 Map showing the distribution of liquefaction manifestations included in the catalogue across Europe. The color of the circles is proportional to the event moment magnitude

Figure 2-16 Excerpt from the GIS-based catalogue built in Liquefact project. The catalogue includes two pieces of information: the main seismological features of the seismic events and the parameters of site where liquefaction occurred

Figure 2-17 Examples of the three main typical conditions faced during the identification of the location of sites where liquefaction occurred

Figure 2-18 Map showing the distribution of liquefaction manifestations included in the catalogue across Europe. The color of the circles is proportional to the event moment magnitude

Figure 2-19 Liquefaction manifestations included in the catalogue grouped basing on moment magnitude bin of 0.5.

Figure 3-1 Magnitude-distance threshold relations for liquefaction derived by Kuribayashi and Tatsuoka (1975) using data from 44 historic Japanese earthquakes that induced liquefaction

Figure 3-2 Magnitude-distance threshold relations for liquefaction derived by Kuribayashi and Tatsuoka in 1975 (a-a) and the version updated by Tatsuoka in 1985 (b-b)

Figure 3-3 Magnitude-epicentral distance threshold relations by Ambraseys (1988) for liquefaction (a-a) compared to the Ambraseys and Tatsuoka (1975) relation (b-b)

Figure 3-4 Magnitude-fault distance threshold relations for liquefaction proposed by Ambraseys (1988)

Figure 3-5 Magnitude-distance threshold relations by Papadopoulos and Lefkopoulos (1993) for liquefaction (α - α for Greek earthquakes and 5.8 \leq Ms \leq 5.9, b-b for Greek earthquakes and Ms > 5.9, e-e for worldwide earthquakes) compared to the Ambraseys (1988) correlation (c-c) and Ambraseys and Tatsuoka (1975) relation (d-d), respectively

Figure 3-6 Distribution of earthquake-induced liquefaction cases in terms of Ms and epicentral distance for the period 1117-1990 (A) and 1900-1990 (B). Ms values in (B) are from instrumental measurements. The bounding equations (dashed lines) were proposed by Galli (2000)

Figure 3-7 Magnitude-distance threshold relations by Papathanassiou et al. (2005) for the Aegean territory. Black dots represent the data which correspond to the instrumental period

Figure 3-8 Magnitude-distance threshold relations by Pirrotta et al. (2007) for the central-eastern Sicily (Italy). Curves were developed in terms of both Mw (a) and Ms (b) magnitude

Figure 3-9 Magnitude-distance relationships for liquefaction in different time periods (a: 1117–2012; b: 1783–2012). In (a) the comparison with the upper bound curve by Galli (2000) is shown (red dashed line). Black dotted lines in (a) refer to two standard errors across the best-fit line (black dashed line). The red full circle corresponds to the liquefaction effects of the 2012 Emilia quake. Few outliers are the black open circles) discarded from the regression analysis

Figure 3-10 Empirical correlations of moment magnitude versus epicentral distance computed in this study for Europe

Figure 3-11 Empirical correlations of moment magnitude versus epicentral distance computed in this study for Italy

Figure 3-12 Empirical correlations of moment magnitude versus epicentral distance computed in this study for Eastern Europe

Figure 3-13 Empirical correlations of moment magnitude versus epicentral distance computed in this study for Western Europe

Figure 3-14 Empirical correlations of moment magnitude versus hypocentral distance computed in this study for Europe using data from the catalogue for which hypocentral depth is available

Figure 3-15 Empirical correlations of moment magnitude versus hypocentral distance computed in this study for Italy using data from the catalogue for which hypocentral depth is available

Figure 3-16 Empirical correlations of moment magnitude versus hypocentral distance computed in this study for Eastern Europe using data from the catalogue for which hypocentral depth is available

Figure 3-17 Empirical correlations of moment magnitude versus hypocentral distance computed in this study for Western Europe using data from the catalogue for which hypocentral depth is available

Figure 3-18 Map of the seismogenic zones defined for Europe within the SHARE project and the location of liquefaction manifestations included in the catalogue built in this study

Figure 3-19 Comparison among empirical correlations of moment magnitude versus hypocentral distance computed in this study for Italy (a) and fro Europe (b) using only data for which hypocentral depth is available and using all data (including data for which the hypocentral depth was assumed starting from the SHARE seismogenic zones)

Figure 3-20 Mw-Ms correlation developed for the Italian territory in this study

Figure 3-21 Comparison among the Mw-Repi threshold correlation developed for the Italian territory in this study and the curve by Galli (2000)

Figure 3-22 Comparison among the Mw-Rhypo threshold correlation developed for Turkey in this study and the curve by Aydan et al. (2000)

Figure 3-23 European empirical correlations of moment magnitude versus epicentral distance computed in this study for liquefaction manifestations such as sand boils

Figure 3-24 European empirical correlations of moment magnitude versus epicentral distance computed in this study for ground cracks induced by liquefaction

Figure 3-25 European empirical correlations in terms of earthquake magnitude-depth-epicentral distance computed in this study for different magnitude ranges: Mw<6 (a), 6<Mw<6.5 (b), 6.5<Mw<7 (c), and 7<Mw<7.5 (d)

Figure 3-26 Limit curves (red lines) computed in this study for different regions. The blue points are the data given in the catalogue, while the green points are the (perturbed) boundary points used to compute the limit curves

Figure 3-27 Comparison among the computed limit curves. The blue points corresponds to the data of the whole catalogue

TABLES

Table 3-1 Uncertainties adopted in the estimation of earthquake magnitudes

Table 3-2 Uncertainties adopted in the estimation of epicentral distances (Zuccolo et al. 2013)

Table 3-3 PGA thresholds for Europe computed through the GMPE by Akkar et al. (2014). Both average values and average values increased by one standard deviation were considered

Table 3-4 PGA thresholds for Italy computed through the GMPE by Akkar et al. (2014) and Bindi et al. (2011). Both average values and average values increased by one standard deviation were considered

1. INTRODUCTION AND PURPOSE OF THIS DOCUMENT

Work Package 2 (WP2) of LIQUEFACT project deals with the zonation of a territory for liquefaction risk at two very different geographical scales, i.e. the continental scale and the municipal or submunicipal scale.

Within WP2, aim of Task 2.3 is the construction of a GIS-based catalogue of historical liquefaction occurrences in Europe. In this framework, a database containing historical information regarding the liquefaction-related phenomena occurred in Europe, including sand ejects and boils, soil settlements and lateral spreading, ground and structural failures, was developed. To built the catalogue of liquefaction manifestations, a critical bibliographic review was carried out to identify the most suitable sources to be used, such as existing databases for specific areas (e.g. for Italy), studies, reports and tales concerning earthquakes, chronicles and diaries, archival documentation and seismic bulletins. In this research, one of the most important starting points is represented by the earthquake catalogue set up for the European territory within recent research projects (i.e. SHARE *"Seismic Hazard Harmonization in Europe"*). Descriptions of liquefaction manifestations triggered by earthquakes, including, if possible, photos and figures, were gathered from the collected references and used to construct a European database under a GIS environment. Thus, the GIS-based catalogue includes two pieces of information: main seismological features of the seismic events (date, geographic coordinates, magnitude, focal mechanism if known, etc.) and liquefaction site parameters (epicentral distance, type of failure, etc.).

On the basis of the European liquefaction occurrences catalogue, calculation of European regressions to predict liquefaction occurrence was carried out starting from the main seismological information of an earthquake within Task 2.4 of WP2. In particular, new empirical European relationships between earthquake magnitude and distance for liquefaction was computed. The dataset was used to identify, on the basis of statistical analyses, magnitude-distance couple threshold below which liquefaction is unlikely to occur, regardless of the geological site conditions. The new correlations was compared to those obtained from the studies available in literature. In setting up the novel empirical models, an effort was made to take into account the influence of both aleatory and epistemic (i.e. model-based) uncertainty. Furthermore, an attempt to define a peak acceleration threshold for soil liquefaction for Europe was undertaken. The focus is on another single liquefaction triggering factor, the peak ground acceleration (PGA) at the site surface. As a matter of fact, if the maximum acceleration at the site is lower than the acceleration limit, liquefaction should not occur, or is very unlikely, regardless of other seismological and geotechnical conditions.

Aim of this document is to illustrates the activities carried out within Task 2.3 and Task 2.4, delivered as D2.4 titled "GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information".

2. GIS-BASED CATALOGUE OF MANIFESTATIONS OF EARTHQUAKE-INDUCED LIQUEFACTION IN EUROPE

2.1 Building the catalogue of liquefaction cases in Europe

To built the catalogue of liquefaction manifestations, a critical bibliographic review was carried out to identify containing historical information regarding the liquefaction-related phenomena occurred in Europe, including sand ejects and boils, soil settlements and lateral spreading, ground and structural failures. The starting point was the catalogues including historical liquefaction cases available for specific countries or regions in Europe, i.e. the catalogues for Italy, Portugal and the Aegean territory, that were retrieved, reviewed, and updated in this study.

2.1.1 Review of the available catalogues for Italy, Portugal and Aegean territory

For the Italian territory, a systematic collection of liquefaction effects, induced by 317 earthquakes occurred in the 1117-1990 period was carried out (Galli and Meloni, 1993; Galli, 2000). The database presented contains indication of liquefaction related to earthquakes that occurred in Italy from 1117 AD to 1990 (Figure 2-1). The seismic event intensity ranged from 5.5 to 11, while several classes, depending on the type of described the magnitude ranged from 4.2 to 7.5 for Ms and from 4.83 to 7.46 for Me.

Figure 2-1 Distribution map of liquefaction cases reported in Galli (2000). Inset A is a particular concerning the 1783 Calabrian earthquakes. Bold lines represent the possibly seismogenetic faults of the three main events (large circles, from south to north: February 5 and 7, and March 28)

Pirrotta et al. (2007) presents an updated dataset of liquefaction phenomena in central-eastern Sicily, realized through the revision of historical accounts, retrieved from the aforementioned catalogues and through an original research of historical primary sources. The Italian Catalogue of Earthquake-Induced Ground Failures (CEDIT) is a recent updating of the liquefaction occurrence database, to which a few new cases has been added (Fortunato et al., 2012; Martino et al., 2014). The CEDIT database is accessible online at the link http://www.ceri.uniroma1.it/cn/gis.jsp and includes also other types of data, e.g. on landslides, surface faulting, etc.

Jorge (1994) collected data on liquefaction cases occurred in the territory of Portugal. The information includes the magnitude, localization of the epicentre, macroseismic intensity and coordinates of the epicentre. Regrettably, the coordinates where liquefaction occurred as well as the epicentral distances are not reported. Therefore, it was necessary to identify the coordinates of sites where liquefaction was observed starting the description of the location and from the map shown in Figure 2-2.

Figure 2-2 Map showing the distribution of historical liquefaction occurrences in Portugal (Jorge, 1994)

A map of the distribution of past liquefaction occurrences also exist for the Aegean region provided by the "Database of historical Liquefaction Occurrences", DALO (Papathanassiou and Pavlides, 2009). The DALO database includes liquefaction phenomena triggered by 88 earthquakes occurred in the time window 1509-2003 in Greece and in some areas of Albany, Republic of Macedonia, Republic of Serbia, Montenegro, Bulgaria and Turkey. Figure 2-3 presents the map showing the distribution of historical liquefaction

occurrences in the broader Aegean region. It was necessary to identify the sources cited in DALO to get the coordinates of the sites where liquefaction was observed because these coordinates are not provided in DALO.

Figure 2-3 Map showing the distribution of historical liquefaction occurrences in the broader Aegean region (Papathanassiou and Pavlides, 2009)

2.1.2 Collection of liquefaction manifestations occurred in Europe

Descriptions of liquefaction manifestations triggered by earthquakes, including, if possible, photos and figures, were gathered from a large number of references and then used to construct the European database under a GIS environment. Two pieces of information were collected: main seismological features of the seismic events (e.g. date, geographic coordinates, magnitude, focal mechanism if known, etc.) and liquefaction site parameters (e.g epicentral distance, type of failure, etc.). In this research, one of the most important starting points is represented by the earthquake catalogue set up for the European territory within SHARE project (Sesetyan et al., 2014; Locati et al., 2014). For Italy, the most recent version of the Italian catalogue of earthquake (Rovida et al., 2016) was considered.

Data on liquefaction manifestations gathered in this study are briefly presented in Table 2-1, where, for each Country, number of liquefaction cases, number of earthquakes that induced the identified liquefaction cases, and the sources are listed.

LIQUEFACT

Table 2-1 Data gathered in this study on liquefaction manifestations in Europe: for each Country, number of liquefaction cases, number of earthquakes that induced liquefaction, and the sources for liquefaction cases are listed

Country	Num. liquefaction manifestations	Num. earthquakes that induced liquefaction	Sources
Albania	12	5	Kociu S. (2004), DALO (Papathanassiou 2004)
Bulgaria	16	1	Ambraseys (2001)
Croatia	13	3	Veinovic (2010), Herak (2010)
France	2	1	Barani (2007)
FYROM	1	1	DALO (Papathanassiou 2004)
Greece	183	54	Ambraseys and Jackson (1997), DALO (Papathanassiou 2004), Ambraseys (1990), Papadopoulos (1990), Papathanassiou (2005), Athanasopoulos (1999), EERI (2003), Pavlides et al. (2013), Valkaniotis et al. (2014), Karakostas (2014), Athanasopoulos (1999), Kazantzidu- Firtinidou (2016), Lekkas (2018), Ganas et al. (2015)
Hungary	26	5	Gyori (2015)
Italy	393	77	CEDIT (Martino et al. 2014), Pirrotta et al. (2007), Galli (2000)
Montenegro	15	1	DALO (Papathanassiou 2004), Ishihara (1985), Kociu (2004)
Portugal	76	3	Jorge (1994)
Romania	39	5	Constantin (2010), Gyori (2015), Rogozea (2014), Ishihara (1984)
Serbia	4	2	Veinovic (2006), Dragojević (2010)
Spain	33	6	Valverde-Palacios et al. (2012), Alfaro et al. (2001), Ayala-Carcedo (1995), Silva Barroso et al. (2014)
Turkey	107	32	Tasdemiroglu (1971), DALO (Papathanassiou 2004), Ambraseys (2000), Ambraseys and Finkel (1987), Ambraseys et al.(2000), Lander (1969), Keightley (1975), Williams et al. (1992), Adalier (2000), Kaybali (1997), Wenk, Lacave, Peter (1998), Erdik (1999), Aydan et al. (2004), Ulusay et al. (2004), Ozcebe et al. (2003), Ulusay et al. (2004), Karakas, Coruk (2013), Akin et al. (2013), Selcuk and Aydin (2013), Akyuz et al. (2011), Aydan et al. (1999)

The database now includes 920 liquefaction manifestations induced by 196 earthquakes. The map in Figure 2-8 shows the distribution of recent and past liquefaction manifestations across Europe. From Figure 2-5 through Figure 2-6 the liquefaction occurrences gathered for specific areas in Europe, i.e. in Italy (Figure 2-5), Eastern Europe (Figure 2-6), and in Western Europe (Figure 2-7) are shown.

Figure 2-4 Map showing the distribution of the liquefaction occurrences included in the European catalogue built in this study

Figure 2-5 Map showing the distribution of liquefaction occurrences (red dots) induced by earthquakes (yellow stars) occurred in Italy included in the catalogue built in this study

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Figure 2-6 Map showing the distribution of liquefaction occurrences (red dots) induced by earthquakes (yellow stars) occurred in Eastern Europe included in the catalogue built in this study. The map in b) is a zoom on Turkey

Figure 2-7 Map showing the distribution of liquefaction occurrences (red dots) induced by earthquakes (yellow stars) occurred in Western Europe included in the catalogue built in this study

From Figure 2-8 through Figure 2-13 a few examples of liquefaction manifestations collected and integrated in the catalogue built in this study are shown.

Figure 2-8 Liquefaction in Cephalonia earthquake 2014, Greece (Valkaniotis et al., 2014)

LIQUEFACT

Deliverable 2.4

v. 1.0

Figure 2-9 Liquefaction during Kraljevo earthquake 2010, Serbia (Dragojevic et al., 2011)

Figure 2-10 Dug up sand volcano, Kecskemet 1911, Hungary (Gyori, 2015)

Figure 2-11 Overturned building due to liquefied foundation, Izmit, Turkey 1999 (Erdik et al., 1999)

Figure 2-12 Sand boils in Dajc village, Albania, Montenegro earthquake 1977 (Kociu, 2004)

Figure 2-13 Liquefaction and lateral spreading during 2011 Van earthquake, Turkey (Karakas et al., 2013)

It is important to point out that the manifestations of liquefaction can appear widespread, as for example during the 2012 seismic sequence occurred in Emilia, Italy (Figure 2-1). In this framework, the definition of single case of liquefaction is a tricky issue and the association of latitude and longitude to a liquefaction case is affected by a significant level of uncertainty. However, it is worth noting that the uncertainty related to the definition of the main seismological features of an earthquake (e.g. magnitude, location, etc.) are affected by at least as much uncertainty.

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Figure 2-14 Liquefaction manifestations during 2012 Emilia earthquake, Italy (Bozzoni et al., 2012; Lai et al., 2015) in at San Carlo village: sand boils (A) and lateral spreading (B)

2.1.3 Open issue: the completeness of the catalogue

Finally, this section addresses one of the main open issues in the building the catalogue, i.e. the completeness of the catalogue itself.

Figure 2-15 illustrates the time ranges covered by the catalogue of liquefaction manifestations for each Country for which data were retrieved. Not surprisingly, the longest period is covered by the catalogue for Italy, which spans a period starting in 1117. It appears anomalous that the manifestations of liquefaction phenomenon in many Countries were detected only in the last centuries. This is especially true for Greece.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748

Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

LIQUEFACT

Figure 2-15 Map showing the distribution of liquefaction manifestations included in the catalogue across Europe. The color of the circles is proportional to the event moment magnitude

2.2 The European catalogue of liquefaction manifestations (Version 1.1)

UNIPV-Eucentre built the first version of the GIS-based catalogue of European manifestations of earthquake-induced soil liquefaction. The structure of the catalogue is illustrated in Section 2.2.1. The version 1.1 of the catalogue includes also the return period associated to each seismic event defined according to the procedure described in Section 2.2.2. The full version of the catalogue is available both in .xlsx file and .shp file (for GIS programs). A compressed version of the catalogue is presented in the Annex.

2.2.1 Structure of the GIS-based catalogue

Descriptions of liquefaction manifestations triggered by earthquakes, including, if possible, photos and figures, were gathered and then used to construct a European database under a GIS environment. Figure 2-16 shown an excerpt from the GIS-based catalogue built in this study. The catalogue includes two pieces of information, i.e. the main seismological features of the seismic events and the parameters of site where liquefaction occurred.

Indeed, the section of the catalogue on the main seismological characteristics of the earthquake includes:

- Country where each seismic event occurred;
- date (day, month, and year);
- location of the earthquake;
- coordinates, i.e. latitude and longitude with associated uncertainties;
- magnitude (in terms of different metrics) with associated uncertainties;
- macroseismic intensity (MCS scale);
- depth of the earthquake;
- source/sources adopted for the previously mentioned data on earthquake.

Data concerning sites where liquefaction occurred included in the catalogue are the following:

- location where liquefaction manifestations occurred;
- coordinates, i.e. latitude and longitude with associated uncertainties;
- quality of the location (that will be discussed hereinafter);
- epicentral distance with associated uncertainties
- hypocentral distance with associated uncertainties
- macroseismic intensity (MCS scale);
- type of liquefaction manifestation according to categories in literature (e.g. Galli, 2000);
- source/sources adopted for the previously mentioned data on earthquake.

	EARTHQUAKES PARAMETERS							LIQUEFIED SITE PARAMETERS											
	Country	Date	Location	Latitude	Longitude	м	Туре	,,,	l₀ (MCS)	,,,	Depth [km]	Latitude	Longitude	Liquefied site	,,,	Repic [km]	Ripo [km]	Liquefaction Type	,,,
419	Greece	1894.04.20	Martino	38.6	23.209	6.77	Mw		10		6	38.714	23.06	Livantes		18.12	19.09	liquefaction	
420	Greece	1894.04.27	Ag. Konstantinos	38.716	22.959	6.91	Mw		10		11	38.721	23.06	Livantes		8.78	14.08	subsidence	
421	Greece	1894.04.27	Ag. Konstantinos	38.716	22.959	6.91	Mw		10		11	38.631	23.125	Almyra		17.24	20.45	subsidence	
422	Greece	1894.04.27	Ag. Konstantinos	38.716	22.959	6.91	Mw		10		11	38.499	22.973	Orhomenos		24.17	26.55	Unspecified	
423	Turkey	1894.07.10	Izmit	40.75	29.55	6.7	Mw		10		15	40.878	29.06	Antigoni		43.64	46.14	ground cracks & lateral spreading	
424	Turkey	1894.07.10	Izmit	40.75	29.55	6.7	Mw		10		15	40.906	29.049	Proti		45.60	48.00	ground cracks	
425	Turkey	1894.07.10	Izmit	40.75	29.55	6.7	Mw		10		15	40.871	29.258	Pendik		28.02	31.79	ground cracks	
426	Turkey	1894.07.10	Izmit	40.75	29.55	6.7	Mw		10		15	41.067	29.042	Arnautkoy		55.38	57.37	subsidence	
427	Turkey	1894.07.10	Izmit	40.75	29.55	6.7	Mw		10		15	40.684	29.494	Hersek		8.73	17.35	liquefaction	
428	Turkey	1894.07.10	Izmit	40.75	29.55	6.7	Mw		10		15	40.423	29.161	gemlik		49.02	51.26	ground cracks & lateral spreading	
429	Turkey	1894.07.10	Izmit	40.75	29.55	6.7	Mw		10		15	40.629	29.007	Karakoy		47.73	50.03	ground cracks	
430	Turkey	1894.07.10	Izmit	40.75	29.55	6.7	Mw		10		15	40.614	28.964	Katirli		51.69	53.82	ground cracks	

Figure 2-16 Excerpt from the GIS-based catalogue built in Liquefact project. The catalogue includes two pieces of information: the main seismological features of the seismic events and the parameters of site where liquefaction occurred

The identification of the location of sites where liquefaction occurred implies heterogeneous levels of uncertainty. Indeed, the following three main typical conditions was defined:

- A. Precisely georeferenced
- B. Georeferenced from map
- C. Location described within text

Examples of the listed conditions are shown in Figure 2-17.

A - Precisely georeferenced

Cefalonia 2014 quake [Valkaniotis et al. 2014]

B - Georeferenced from map

C - Location described text

"Lateral spreading and ground settlement were very pronounced in Northwestern Albania in Shkodra district (Velipoja beach), very close to seaside, with pure Quaternary sandy deposits. Due to such phenomena the ground around Velipoja No. 2 Pump Station's building subsided about 50 cm"

Montenegro quakes [Kociu, 2004])

The catalogue now includes 920 liquefaction manifestations. The map in Figure 2-18 shows the distribution of liquefaction occurrences across Europe and the color of the circles is proportional to the event moment

magnitude. From the graph in Figure 2-19, it turns out that the largest number of liquefaction manifestations were induced by earthquake of moderate magnitude, i.e. Mw ranging from 6 to 6.5.

Figure 2-18 Map showing the distribution of liquefaction manifestations included in the catalogue across Europe. The color of the circles is proportional to the event moment magnitude

Figure 2-19 Liquefaction manifestations included in the catalogue grouped basing on moment magnitude bin of 0.5.

2.2.2 Definition of the return period associated to the seismic events in the catalogue

The recurrence interval was estimated through the bounded Gutenberg Richter relationship. The a- and bparameters, as well as the upper magnitude to be used in the computation of the bounded Gutenberg-Richter, were retrieved from SHARE's seismogenic zones. This required to associate each earthquake to a SHARE's seismogenic zone, based on the geographical coordinates (and depth, if available) of the earthquake. Since SHARE defines four maximum magnitudes for each seismogenic zone, with relative weights, the upper magnitude was determined as the weighted average of the four maximum magnitude defined in SHARE, increased by 0.1 units. The lower magnitude was taken equal to 4.0. The recurrence interval was computed as the inverse of the activity rate associated with the magnitude of the earthquake.

Moreover, the earthquake catalogue was declustered trough the Burckhard and Gruenthal (2009)'s procedure in order to associate the mainshock's recurrence interval to the each seismic sequence (foreshocks-mainshock-aftershocks).

3. EUROPEAN REGRESSIONS TO PREDICT LIQUEFACTION OCCURRENCE STARTING FROM THE MAIN SEISMOLOGICAL INFORMATION OF AN EARTHQUAKE

3.1 State of the art

Early studies in the 1970s on the functional form linking earthquake magnitude and distance of the farthest liquefied site are presented in Section 3.1.1. The development of empirical relationships between earthquake distance and magnitude for liquefaction was examined by several authors in the past for different worldwide regions. Chronological review of literature magnitude-distance correlations for liquefaction is illustrated in Section 3.1.2. Finally, most recent insights on earthquake parameters thresholds for liquefaction triggering are presented in Section 3.1.3.

3.1.1 Early studies on functional form linking quake magnitude and liquefaction distance

Kuribayashi and Tatsuoka (1975) and then Youd (1977) were the first authors able to demonstrate the existence of a correlation between the magnitude of the earthquake that caused liquefaction and the distance of the farthest site in which liquefaction occurred. The goodness of this assumption is illustrated by Youd and Perkins (1978) starting from considerations concerning the main features of the seismic action, such as cyclic stress ratio, earthquake magnitude and number of the loading cycles. The cyclic shear stress ratio τ/σ'_{v0} and the number of loading cycles are linked by the following exponential equation:

$$\left(\frac{\tau}{\sigma_{\nu 0}'}\right)^a N^b = c \tag{3-1}$$

where:

- a, b and c are constant coefficients which depend on the soil type
- τ is the maximum shear stress
- σ'_{v0} is the effective vertical stress

The cyclic shear stress ratio τ/σ'_{v0} is then expressed in (3-2) as a function of the amplitude of ground motions, which varies with the magnitude M and the distance from the seismic source r:

$$\frac{\tau}{\sigma_{\nu 0}'} = k_1 r^{-k_2} e^{Mk_2} \tag{3-2}$$

where k_1 , k_2 , k_3 are constant coefficients.

The number of loading cycles N is a measure of the duration of the seismic motion and therefore it varies with the magnitude M and the distance r as shown in (3-3):

$$N = m_1 r^{-m_3} e^{Mm_2} (3-3)$$

where m_1 , m_2 , m_3 are constant coefficients.

Substituting the equations (3-2) and (3-3) in (3-1), the relation (3-4) can be obtained:

$$\left(\frac{\tau}{\sigma_{\nu 0}'}\right)^a N^b = k_1^a m_1^b r^{-(ak_2 + bm_3)} e^{(ak_2 + bm_2)M}$$
(3-4)

By assuming that r is the maximum distance between the seismic source and the site where the ground shaking is strong enough to induce liquefaction (R) and extracting its logarithm, the equation (3-5) can be obtained:

$$\log(k_1^a m_1^b) + (ak_2 + bm_2)M - (ak_3 + bm_3)\log(R) = \log(c)$$
(3-5)

From (3-5), M can be obtained by using the following relations:

$$M = \frac{\log(c) - \log(k_1^a m_1^b) + (ak_3 + bm_3)\log(R)}{(ak_2 + bm_2)}$$
(3-6)

The equation (3-6) can be written as:

$$M = C_1 + C_2 \log(R)$$
(3-7)

where:

- M is the magnitude of the earthquake that induced liquefaction.
- R is the maximum distance between the seismic source and the farthest site where liquefaction occurred. It can be expressed in terms of epicentral, hypocentral, and fault distance.

3.1.2 Bibliographic review of empirical magnitude-distance correlations for liquefaction

Kuribayashi and Tatsuoka (1975) are the first authors who developed magnitude-distance threshold relations for liquefaction using data from 44 historic Japanese earthquakes occurred between 1872 and 1968. The proposed relationships are shown in Figure 3-1.

Figure 3-1 Magnitude-distance threshold relations for liquefaction derived by Kuribayashi and Tatsuoka (1975) using data from 44 historic Japanese earthquakes that induced liquefaction

The relation proposed by Kuribayashi and Tatsuoka (1975) for magnitude greater then 6, was then updated by Tatsuoka in 1985 on the bases of the revision of magnitude assigned to earthquakes occurred prior to 1922. Indeed, these values were initially estimated from the macroseismic scale called "kawazumi", criticized for the presence of unreliable values. The comparison of the relationships derived by Kuribayashi and Tatsuoka in 1975 (a-a curve) and the updated version proposed by Tatsuoka in 1985 (b-b curve) are shown in Figure 3-2.

Figure 3-2 Magnitude-distance threshold relations for liquefaction derived by Kuribayashi and Tatsuoka in 1975 (a-a) and the version updated by Tatsuoka in 1985 (b-b)

Youd (1977) and Youd and Perkins (1978) introduced the idea of measuring the distance from the fault rather than from the epicenter for liquefaction that occurred during several earthquakes in the USA. Keefer (1984) collected data from 40 historical earthquakes and presented new curves of magnitude versus epicentral distance, showing an exponential increase in distance at higher magnitude values.

In 1988, Ambraseys proposed two new type of relations starting from liquefaction manifestations occurred during 137 earthquakes. The following sources was adopted:

- 39 out of 44 Japanese earthquakes identified by Kuribayashi and Tatsuoka (1975)
- 14 earthquakes occurred worldwide retrived from Youd (1977)
- 6 earthquakes occurred worldwide retrieved from Davis and Berrill (1983)
- 7 earthquakes occurred worldwide retrieved from Fairless and Berrill (1984)
- 70 new cases identified by Ambraseys himself.

The first type of relation proposed by Ambraseys (1988) is expressed in terms of moment magnitude and epicentral distance (in centimeters). The choice to express the epicentral distance in cm is at least questionable. This relation (a-a curve) is shown in Figure 3-3, where it is compared with the Kuribayashi and Tatsuoka (1975) correlation (b-b curve). A few points in Figure 3-3 are located below the proposed threshold curve. Indeed, Ambraseys states that with reference to magnitude-distance pairs outside the curve, the liquefaction is very unlikely to occur except for sites characterized by rare predisposing conditions such as extremely soft soil deposits.

The second type of empirical relation developed by Ambraseys (1988) is expressed in terms of moment magnitude and fault distance. Figure 3-4 shows the magnitude-fault distance threshold relations for liquefaction proposed by Ambraseys (1988).

Figure 3-3 Magnitude-epicentral distance threshold relations by Ambraseys (1988) for liquefaction (a-a) compared to the Ambraseys and Tatsuoka (1975) relation (b-b)

Figure 3-4 Magnitude-fault distance threshold relations for liquefaction proposed by Ambraseys (1988)

Ambraseys (1991) used 137 worldwide liquefaction cases, in a wide variation of tectonic and sedimentary settings, and correlated a uniform type of magnitude (moment magnitude) both with epicentral distance Re (in centimeters; namely the farthest observed liquefaction correlation between maximum epicentral distance effect) and fault distance Rf (in centimeters).

Galli and Meloni (1993) and Galli and Ferreli (1995) collected liquefaction data reported during several historical earthquakes in Italy and placed a limiting distance of liquefaction occurrence on the basis of epicentral intensity (Io, MCS scale) versus epicentral distance (in kilometers).

Papadopoulos and Lefkopoulos (1993) extended the Ambraseys database with 30 new cases of liquefaction occurred in Greece since 1767, generated by seismic events with a magnitude Ms ranging between 5.8 and 7.2, and 2 American evidences of liquefaction (Loma Prieta and Falcon State) and 1 from New Zealand (Edgecumbe). These authors developed different curves based on different magnitude ranges and different regions. The relations are shown in Figure 4.5, where the proposed curves are compared with those realized by Ambraseys (1988) and Kuribayashi and Tatsuoka (1975). Indeed, the plotted curves are:

- α - α : Papadopoulos and Lefkopoulos (1993) for Greek earthquakes and 5.8 \leq Ms \leq 5.9
- b-b: Papadopoulos and Lefkopoulos (1993) for Greek earthquakes and Ms > 5.9
- c-c: Ambraseys (1988) relation
- d-d: Kuribayashi and Tatsuoka (1975) relation
- e-e: Papadopoulos and Lefkopoulos (1993) for worldwide earthquakes.

Papadopoulos and Lefkopoulos (1993) developed also empirical threshold curves in terms of moment magnitude and fault distance for both the Greek territory and also by using all the data they collected.

Figure 3-5 Magnitude-distance threshold relations by Papadopoulos and Lefkopoulos (1993) for liquefaction (α - α for Greek earthquakes and 5.8 \leq Ms \leq 5.9, b-b for Greek earthquakes and Ms > 5.9, e-e for worldwide earthquakes) compared to the Ambraseys (1988) correlation (c-c) and Ambraseys and Tatsuoka (1975) relation (d-d), respectively

Wakamatsu (1993) extended the work of Kuribayashi and Tatsuoka (1975) by adding 46 new data from Japanese earthquakes.

In Italy, historical research on collections of liquefaction-induced phenomena was updated by Galli (2000) as illustrated in Section 2.1.1. This work allowed Galli to highlight the distribution of intensity/magnitude values versus epicentral distance. Figure 3-6 shows, for example, the distribution of earthquake-induced liquefaction cases in terms of Ms and epicentral distance for the period 1117-1990 (A) and 1900-1990 (B). Ms values in (B) are from instrumental measurements. The bounding equations (dashed lines in Figure 3-6) were proposed by Galli (2000).

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Figure 3-6 Distribution of earthquake-induced liquefaction cases in terms of Ms and epicentral distance for the period 1117-1990 (A) and 1900-1990 (B). Ms values in (B) are from instrumental measurements. The bounding equations (dashed lines) were proposed by Galli (2000)

In Turkey, Aydan et al. (2000) re-evaluated seismic parameters of Turkish earthquakes and developed relationships in terms of Ms and hypocentral distance.

Starting from DALO (Section 2.1.1), Papathanassiou (2004) developed for the Aegean territory empirical Ms-Repi threshold curve with reference to the $5.5 \le Ms \le 7.6$ magnitude range. Although the curve (shown in Figure 3-7) was computed starting from the instrumental data only (black dots), the limit relation is also valid for the whole catalogue.

Figure 3-7 Magnitude-distance threshold relations by Papathanassiou et al. (2005) for the Aegean territory. Black dots represent the data which correspond to the instrumental period

Pirrotta et al. (2007) presents an updated dataset of liquefaction phenomena in central-eastern Sicily and associated threshold curves in terms of epicentral distance and both Mw and Ms magnitude (Figure 3-8). For the first time, coefficients computed from regressions are associated to a certain level of uncertainty.

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Figure 3-8 Magnitude-distance threshold relations by Pirrotta et al. (2007) for the central-eastern Sicily (Italy). Curves were developed in terms of both Mw (a) and Ms (b) magnitude

Starting from CEDIT database, Martino et al. (2014) shows the magnitude-distance distribution for liquefaction of Figure 3-9. The main inference, stated in the paper, is that liquefaction needs more accurate investigations during earthquakes in order to be properly addressed and parameterised so that some conclusive relationships can be drawn.

Figure 3-9 Magnitude-distance relationships for liquefaction in different time periods (a: 1117–2012; b: 1783–2012). In (a) the comparison with the upper bound curve by Galli (2000) is shown (red dashed line). Black dotted lines in (a) refer to two standard errors across the best-fit line (black dashed line). The red full circle corresponds to the liquefaction effects of the 2012 Emilia quake. Few outliers are the black open circles) discarded from the regression analysis

3.1.3 Most recent insights on earthquake parameters thresholds for liquefaction triggering

Zhou et al. (2018) compiled a large amount of liquefaction case histories in the 2008 Wenchuan earthquake and then established a relationship between the energy absorption ratio and damping ratio to obtain the typical threshold imparted energy of seismic waves. A seismic energy attenuation model was proposed specifically for line type of fault rupture like the 2008 Wenchan earthquake. Then the liquefaction distance limit for the Mw=7.9 main shock was estimated based on an earthquake magnitude-energy-distance relationship, and validated by the field case histories.

In 2018, the Center for Geotechnical Practice and Research at Virginia Polytechnic Institute and State University published a report titled "Smallest Earthquake Magnitude that Can Trigger Liquefaction" (Green and Bommer, 2018) aimed to establish if there is a magnitude threshold below which the possibility of triggering liquefaction can be discounted. Such a lower bound for liquefaction triggering is also required for probabilistic liquefaction hazard analyses, PLHA (e.g., Kramer and Mayfield 2007). Based on field observations and a simple parametric study, Green and Bommer (2018) conclude that earthquakes as small as moment magnitude 4.5 can trigger liquefaction in extremely susceptible soil deposits but these correspond to site conditions where building construction is not viable. For soil profiles that are sufficiently competent to support foundation loads, the minimum earthquake magnitude for the triggering of liquefaction should be about 5. Green and Bommer (2018) therefore propose that in liquefaction hazard assessments for engineering applications, magnitude 5.0 be adopted as the minimum earthquake size considered.

Green and Bommer (2018) discussed also whether it would not be more appropriate to define the minimum level of ground shaking that might trigger liquefaction. Liquefaction triggering is controlled by both the amplitude (most usually peak ground acceleration, PGA) and the duration (or number of cycles of motion) simultaneously. Therefore, for earthquakes occurring at short distances from the site of interest, the magnitude is potentially a good indicator of the capacity of the motion to trigger liquefaction since both PGA and duration depend on magnitude - and display inverse dependence on distance (Lasley et al., 2017). Moreover, residuals of PGA and duration with respect to median predictions from GMPEs are found to be negatively correlated (Bradley, 2011). Studies that have focused on thresholds of PGA for liquefaction triggering have normalized the peak acceleration values to a common reference magnitude precisely to account for the influence of duration (Santucci de Magistris et al., 2013). Absolute minimum PGA thresholds for liquefaction could be defined on the basis of lower amplitudes of motion being incapable of inducing sufficient strain generate excess pore water pressure in the soil, which is requisite for liquefaction triggering (Dobry et al., 1982, Rodriguez-Arriaga and Green, 2018) but to use such an approach for screening of liquefaction hazard would require estimation of PGA values. For PLHA, there may be benefits of defining a lower bound for hazard contributions based on a ground-motion parameter, or vector of parameters, but Cumulative Absolute Velocity (CAV, adopted in Probabilistic Seismic Hazard Analysis) may not be the most suitable metric for this purpose (Green and Bommer, 2018).

3.2 Novel correlations based on the European catalogue of liquefaction cases

On the basis of the liquefaction occurrences catalogue, calculation of European regressions to predict liquefaction occurrence from the main seismological information of an earthquake was carried out by UNIPV-Eucentre. A code was purposely-developed in this study for the calculation of the empirical regressions. The adopted functional form is the one proposed by Youd and Perkins (1978). The input data in term of magnitude-distance couples are extracted from the catalogue. Data are subdivided into bins of increasing magnitude and, within each bin, the magnitude-distance couple referred to the maximum distance in the bin is selected. Size of the magnitude bin can influence the selection of data, thus sensitivity analysis have been carried out by considering magnitude bin of 0.25, 0.5, 1, and 2. Once the magnitude-distance couples are identified, the threshold curve is calculated using a nonlinear least squares regression.

3.2.1 Empirical correlations of moment magnitude versus epicentral distance

Empirical correlations of moment magnitude versus epicentral distance are computed herein on the basis of the 920 magnitude-distance couples from the European liquefaction occurrences catalogue. Indeed:

- for Europe (Figure 3-10): $M_w = 1.377 + 2.394 \log(R_{epi})$	(3-8)
- for Italy (Figure 3-11): $M_w = 0.921 + 2.596 \log(R_{epi})$	(3-9)
- for Eastern Europe (Figure 3-12): $M_w = 1.895 + 2.187 \log(R_{epi})$	(3-10)
- for Western Europe (Figure 3-13):	

$$M_w = 1.602 + 2.372 \log(R_{epi}) \tag{3-11}$$

Figure 3-10 Empirical correlations of moment magnitude versus epicentral distance computed in this study for Europe

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Figure 3-12 Empirical correlations of moment magnitude versus epicentral distance computed in this study for Eastern Europe

Figure 3-13 Empirical correlations of moment magnitude versus epicentral distance computed in this study for Western Europe

3.2.2 Empirical correlations of moment magnitude versus hypocentral distance

Starting from the 488 magnitude-distance couples for which the earthquake depth is available, empirical correlations of moment magnitude versus hypocentral distance are computed in this study:

- for Europe (Figure 3-14):	
$M_w = 1.492 + 2.335 \log(R_{hypo})$	(3-12)

- for Italy (Figure 3-15):

 $M_w = 1.783 + 2.449 \log(R_{hypo})$

- for Eastern Europe (Figure 3-16): $M_w = 1.516 + 2.330 \log(R_{hypo})$

- for Western Europe (Figure 3-17): $M_w = 1.974 + 2.202 \log(R_{hypo})$

(3-13)

(3-14)

Figure 3-15 Empirical correlations of moment magnitude versus hypocentral distance computed in this study for Italy using data from the catalogue for which hypocentral depth is available

Figure 3-16 Empirical correlations of moment magnitude versus hypocentral distance computed in this study for Eastern Europe using data from the catalogue for which hypocentral depth is available

Figure 3-17 Empirical correlations of moment magnitude versus hypocentral distance computed in this study for Western Europe using data from the catalogue for which hypocentral depth is available

Since for less than half of the data in the catalogue the depth of the earthquake is not available, it has been decided to estimate the earthquake depth starting from the seismogenic zones defined within the SHARE project. Figure 2-15 show the map of the seismogenic zones defined for Europe within the SHARE project and the location of liquefaction manifestations included in the catalogue built in this study. The estimates of the depth obtained using this approach should be considered valid only in first approximation. Thus, a code for calculating non-linear weighted least-square regression was implemented. In this framework, the weight assigned to data for which the hypocentral depth is available in the catalogue is twice the weight assigned to data for which the hypocentral depth was assumed starting from the SHARE seismogenic zones.

Empirical correlations of moment magnitude versus hypocentral distance computed using all the data in the catalogue are the following:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748	LIQUEFACT Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0
- for Europe: $M_w = -0.6791 + 3.237 \log(R_{hypo})$) (3-16)
- for Italy: $M_w = 0.365 + 2.845 \log(R_{hypo})$	(3-17)
- for Eastern Europe: $M_w = 1.516 + 2.333 \log(R_{hypo})$	(3-18)

- for Western Europe:

$$M_w = -0.7586 + 3.2825 \log(R_{hypo}) \tag{3-19}$$

The comparison among the relations in equations (3-13) and (3-17) for Italy are shown Figure 3-19a and the comparison among the relations for Europe in equations (3-15) and (3-19) are shown in Figure 3-19b.

Figure 3-18 Map of the seismogenic zones defined for Europe within the SHARE project and the location of liquefaction manifestations included in the catalogue built in this study

Figure 3-19 Comparison among empirical correlations of moment magnitude versus hypocentral distance computed in this study for Italy (a) and fro Europe (b) using only data for which hypocentral depth is available and using all data (including data for which the hypocentral depth was assumed starting from the SHARE seismogenic zones)

3.2.3 Comparison between novel and literature correlations

Comparisons between novel relations proposed in this study and correlations selected from literature, i.e. for Italy (i.e. Galli, 2000) and for Turkey (i.e. Aydan et al., 2000), are herein presented.

In order to compare the empirical curve developed in this study for Italy (Section 3.2.1) and the curve proposed by Galli (2000), first of all a Mw-Ms relation was developed starting from data in the most recent version of the Italian Catalogue of earthquakes. Figure 3-20 shows the Mw-Ms relation herein developed.

Figure 3-20 Mw-Ms correlation developed for the Italian territory in this study

Thus, the threshold correlation by Galli (2000) was expressed in terms of Mw and then compared to the empirical Mw-Repi relation proposed in this study (Figure 3-21). The Galli (2000) curve seems less conservative than the one calculated herein. This can be due to the post-1990 cases included in the updated version of the catalogue of liquefaction occurrences developed herein for Italy. Furthermore, the uncertainty deriving from the application of the Ms-Mw conversion between should also be considered.

Figure 3-21 Comparison among the Mw-Repi threshold correlation developed for the Italian territory in this study and the curve by Galli (2000)

Aydan et al. (2000) developed relationships for Turkey in terms of Ms and hypocentral distance. Again, it was necessary to elaborate the original relations in order to express it in terms of Mw. The conversion correlation proposed by Kadirioglu and Kartal (2016) for the Turkish territory was adopted. An empirical correlation of moment magnitude versus hypocentral distance computed using all the data in the catalogue as illustrated 3.2.2, was developed herein for Turkey. The equation is:

 $M_w = 0.4554 + 3.232 \log (R_{hypo})$

(3-20)

Figure 3-22 shows the comparison among the Mw-Rhypo threshold correlation developed for Turkey in this study and the curve proposed by Aydan et al. (2000). It is worth noting that the curve developed in this study seems to be more conservative especially for magnitude greater than 7.

Figure 3-22 Comparison among the Mw-Rhypo threshold correlation developed for Turkey in this study and the curve by Aydan et al. (2000)

3.2.4 Empirical correlations for different types of liquefaction manifestations

An attempt to develop empirical correlations for different types of liquefaction manifestations has been carried out in this study. In particular, the following relations was computed:

- for sand boils (Figure 3-14):	
$M_w = 1.173 + 2.752 \log(R_{epi})$	(3-21)
- for ground cracks (Figure 3-24):	
$M_w = 1.095 + 2.655 \log(R_{eni})$	(3-22)

The difference among the coefficients of the two above relationships are negligible.
LIQUEFACT Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Figure 3-23 European empirical correlations of moment magnitude versus epicentral distance computed in this study for liquefaction manifestations such as sand boils

Figure 3-24 European empirical correlations of moment magnitude versus epicentral distance computed in this study for ground cracks induced by liquefaction

3.2.5 Empirical correlations in terms of earthquake magnitude-depth-epicentral distance

The analysis of the 488 cases of liquefaction for which the depth of the seismic event is known has brought to light a relationship between the focal depth of the hypocenter and the maximum distance at which liquefaction was recorded. This relationship is based on the assumption that, with the same magnitude of the seismic event, the increase in the depth of the epicenter, at least up to certain values, corresponds to an increase in the area at surface that is affected by the effects of the earthquake.

To verify this hypothesis, the data from the catalogue were subdivided into magnitude bin of 0.5 and the couples of the focal depth of the earthquake triggering liquefaction and epicentral distance between epicenter and the liquefied site were compared (Figure 3-25). Figure 3-25b shows, for example, for

6<Mw<6.5, how the maximum distance at which liquefaction was recorded increases with the increase of the focal depth of the triggering earthquake up to depth values of about 20km. Beyond this depth the attenuation phenomena become preponderant therefore the area of resentment of the earthquake tends to decrease.

Starting from these data it was therefore possible to develop some curves that link the maximum distance at which the liquefaction occurred and the depth of the triggering seismic event; the adopted functional form is:

$$R_{epi} = a \cdot D^2 + b \cdot D + C \tag{3-23}$$

where

- Repi is the maximum distance where liquefaction was induced by the earthquake
- D is the focal depth of the earthquake
- a,b,c are coefficients computed through the regression carried out using the *polyfit* function available in MatLAB[®] (<u>https://it.mathworks.com</u>).

European empirical correlations in terms of earthquake magnitude-depth-epicentral distance have been therefore computed in this study for different magnitude ranges:

- for Mw<6 (Figure 3-25a):

$$R_{epi} = -0.129 D^2 + 5.3577 D + 6.7786$$
 (3-24)
- for 6
 $R_{epi} = -0.0779 D^2 + 3.5105 D + 20.701$ (3-25)
- for 6.5
 $R_{epi} = -0.314 D^2 + 11.281 D + 10.0446$ (3-26)
- for 7
 $R_{epi} = -0.0298 D^2 + 5.2116 D + 91.3282$ (3-27)

From the curves presented in Figure 3-25 it turns out that with the increase of the focal depth, the resentment area in which the liquefaction triggering is possible is greater. For earthquakes with a magnitude smaller then 7, the area of resentment increases for increasing depths up to 20-25km, then because of the attenuation of the seismic waves the area of resentment starts to decrease. For magnitudes greater than 7, the depth corresponding to the maximum epicentral distance is about 90km. For this magnitude range, the data must be considered with caution both for the low number of seismic events of such magnitude within the catalogue, and for the presence of data coming from the Vrancea area in Romania which has peculiar characteristics compared to the rest of the European territory.

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Figure 3-25 European empirical correlations in terms of earthquake magnitude-depth-epicentral distance computed in this study for different magnitude ranges: Mw<6 (a), 6<Mw<6.5 (b), 6.5<Mw<7 (c), and 7<Mw<7.5 (d)

3.3 Computation of novel magnitude-distance correlations taking into account the uncertainties

Uncertainties on magnitude and epicentral distance were taken into account by randomly varying magnitude and epicentral distance within Gaussian probability distributions. The standard deviation was taken equal to 1/3 of the uncertainty associated with the moment magnitude and epicentral distance. Uncertainties where retrieved from the catalogue, if available. Otherwise, the assessment of the uncertainties was carried out based on expert judgement, reflecting the improvement in estimating earthquake magnitudes and epicentres over the years. The length of the earthquake catalogue was split into three periods and a value of uncertainty for moment magnitude was associated to each of these, as reported in table (Table 3-1). If not given in the catalogue, the uncertainties on epicentral distance were retrieved from the work by Zuccolo et al. (2013), in which the authors proposed uncertainty values on epicentral distance for Italy (Table 3-2).

LIQUEFACT Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Table 3-1 Uncertainties adopted in the estimation of earthquake magnitudes

Year	Error on magnitude
≤1799	0.3
1800-1969	0.2
≥1970	0.1

Table 3-2 Uncertainties adopted in the estimation of epicentral distances (Zuccolo et al. 2013)

Year	Error on distance (km)
≤1799	30
1800-1899	15
1900-1969	10
≥1970	5

A large number (10.000) of magnitude-distance realizations were generated. A set of boundary points was selected for each realization, as follows:

- the magnitude range was subdivided in bins with amplitude 0.5;
- for each magnitude bin, the point with the largest epicentral distance was selected;
- the points with decreasing distance at increasing magnitude were discarded.

The procedure was repeated for the 10000 realizations. An orthogonal distance regression with the form $M_w=a+b^*\log(R_{epi})$ was applied to all boundary points. The python package *scipy.odr* was adopted to implement the orthogonal distance regression. The procedure was applied for the entire European territory and for three sub-catalogues corresponding to three regions: Italy (with maximum distance=200 km), Eastern Europe and Western Europe. The obtained limit curves (Figure 3-26) are:

- for Europe: $M_w = 1.969 + 0.928 \log(R_e)$	(3-28)
- for Italy: $M_w = 3.086 + 0.626 \log(R_e)$	(3-29)
- for Eastern Europe: $M_w = 3.793 + 0.596 \log(R_e)$	(3-30)
- for Western Europe: $M_w = 2.235 + 0.881 \log(R_e)$	(3-31)

From Figure 3-26 it is evident that the computed limit curve for Eastern Europe is not satisfactory, since this region suffers of lack of data at M_w >6 and epicentral distances>100 km. The comparison among the

LIQUEFACT Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

computed curves is given in Figure 3-27, showing that the limit curves for the entire Europe and Western Europe are almost coincident, while the limit curve of Eastern Europe exhibits the problem mentioned above. Therefore, we suggests to use the limit curve computed for the entire Europe both in Eastern Europe and Western Europe. Concerning Italy, the more conservative limit curve computed considering only Italian data can be used.

Figure 3-26 Limit curves (red lines) computed in this study for different regions. The blue points are the data given in the catalogue, while the green points are the (perturbed) boundary points used to compute the limit curves

Figure 3-27 Comparison among the computed limit curves. The blue points corresponds to the data of the whole catalogue

3.4 Contributions towards the definition of a peak acceleration threshold for soil liquefaction

The peak acceleration threshold for soil liquefaction was estimated by computing the PGAs associated with the magnitude and distance pairs of the computed limit curve for Europe (Figure 3-26; Figure 3-27). In the specific, PGA values were determined through the ground motion prediction equation by Akkar et al. (2014) for EC8 subsoil classes B (Vs_{30} =600 m/s), C (Vs_{30} =270 m/s) and D (Vs_{30} =150 m/s). For each considered subsoil class, the PGA threshold was assumed to be equal to the minimum computed PGA value (Table 3-3).

Table 3-3 PGA thresholds for Europe computed through the GMPE by Akkar et al. (2014). Both average values and average values increased by one standard deviation were considered

EC8	PGA (g)	PGA threshold for Italy (g)
	AVERAGE	AVERAGE + std.dev
В	0.011	0.023
С	0.015	0.031
D	0.017	0.035

The PGA thresholds given in Table 3-3 are very low, therefore they suggests to not define a PGA threshold for liquefaction in seismic codes.

PGA thresholds were also computed for the Italian territory using the Italian ground motion prediction equation by Bindi et al. (2011), in addition to the European Akkar et al. (2014). The results are given in Table 3-4. As expected, PGA thresholds for the Italian territory are even lower than those for the European territory.

Table 3-4 PGA thresholds for Italy computed through the GMPE by Akkar et al. (2014) and Bindi et al. (2011). Both average values and average values increased by one standard deviation were considered

EC8	PGA (g)	PGA (g)	PGA (g)	PGA (g)		
	Akkar et al. (2014)	Bindi et al. (2011)	Akkar et al. (2014)	Bindi et al. (2011)		
	AVERAGE		AVERAGE + std.dev			
В	0.004	0.005	0.009	0.011		
С	0.006	0.006	0.013	0.013		
D	0.007	0.004	0.015	0.010		

LIQUEFACT Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

4. CONCLUDING REMARKS

A homogeneous and composite catalogue of liquefaction manifestations occurred in Europe was compiled by UNIPV-Eucentre in a GIS environment. Not surprisingly, it turns out that almost all the liquefaction cases occurred in the European countries located in the Mediterranean region since they are characterized by highest seismic hazard.

Basing on this catalogue, various European empirical correlations to predict liquefaction starting from the main seismological characteristics of an earthquake were developed. These empirical curves can be updated by adding further data in the catalogue. Estimating the possible region of liquefaction occurrence during a strong earthquake is highly valuable for economy loss estimation, reconnaissance efforts and site investigations after the event. These type of correlations are also used to evaluate the intensity and magnitude of the paloevents.

Finally, starting from the developed magnitude-distance correlations, a preliminary definition of a peak acceleration threshold for soil liquefaction are proposed in this study. Liquefaction exclusion criteria, based on peak ground acceleration (PGA) threshold value, are often included in seismic codes and recommendations. EC8 provides a limit for the acceleration at the site surface equal or larger than 0.15g for the occurrence of liquefaction. In Italy, specific verifications are not required by the Italian Building Code (NTC18) whenever the design acceleration on the ground surface is lower than 0.1g. The values herein computed by using different GMPEs ranges from 0.004g to 0.015g. Therefore, the PGA threshold value is an order of magnitude lower than the values in EC8 and NTC18. It is important to highlight the huge uncertainty in the preliminary estimate carried out in this study due to the use of GMPEs.

REFERENCES

- Abedi M. (2011), Effects of plastic fines on the instability of sand. Soil dynamics and earthquake engineering 30
- Adalier K. (2000), Geotechnical issues of the June 27, 1998 Adana-Ceyhan earthquake, 12 WCEE
- Adalier K. (2000), Liquefaction during the June 27, 1998 Adana-Ceyhan (Turkey) earthquake, Geotechnical and geological engineering 18: 155-174
- Adalier K. (2001), Liquefaction and ground failure during the 1998 Adana (Turkey) earthquake and lab model simulations, Fourth international conference on recent advances in geotechnical earthquake engineering and soil dynamics
- Akin et al. (2013), Evaluation of liquefaction in Karasu river floodplain after the October 23, 2011 Van (Turkey) earthquake, Nat. hazards 69: 1551-1575
- Akkar S., Sandikkaya M.A., Bommer J.J. (2014), Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East, Bulletin of Earthquake Engineering, 12(1): 359-387
- Akyuz S., Zabci C., Sancar T., (2011), Preliminary report on the 23 October 2011 Van earthquake, Instanbul Teknik Universitesi
- Aliaj et al. (2004), Probabilistic seismic hazard maps for Albania, 13th World conference on earthquake engineering, Vancouver, Canada, paper no. 2469
- Ambraseys N. (2001), The Kresna earthquake of 1904 in Bulgaria, Annali di geofisica, vol. 44 n. 1
- Ambraseys N.N. (1988), Engineering seismology, Earthquake engineering and structural dynamics vol 17:1-105
- Ambraseys N.N. (1990), Seismicity and associated strain of central Greece between 1890 and 1988, Geophys J. Int, 101, 663-708
- Ambraseys N.N. (1998), The Rhodes earthquake of 26 June 1926, Journal of seismology 2: 267-292
- Ambraseys N.N. (2000), The earthquake of 10 July 1894 in the gulf of Izmit (Turkey) and its relation to the earthquake of 17 August 1999, Journal of seismology 5: 117-128
- Ambraseys N.N. (2000), The seismicity of the Marmara Sea area 1800-1899, Journal of earthquake engineering 4:3: 377-401
- Ambraseys N.N., Finkel C.F. (1987), The Saros-Marmara earthquake of 9 august 1912, Earthquake engineering and structural dynamics vol 15: 189-211
- Ambraseys N.N., Jackson J.A. (1997), Seismicity and strain in the gulf of Corinth (Greece) since 1964, Journal of earthquake engineering 1:3, 433-474 and Geoenvironmental Engineering 133, 802-813.
- Arpat E., Saroglu F., Nafi Toksoz M., (1977), East Anatolian earthquake of 24 November 1976, Nature vol 270
- Athanasopoulos G.A (1999), Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake, Soil dynamics and earthquake engineering 18, 135-149

- Aydan O., Hamada M., Bardet J., Ulusay R., Kanibir A. (2004), Liquefaction induced lateral spreading in the 1999 Kocaeli earthquake, Turkey: case study around the hotel Sapanca, 13th world conference on earthquake engineering, paper n. 2921
- Aydan O., Ulusay R., Kumsar H., Tuncay E. (1999), Site investigation and engineering evaluation of the Duzce-Bolu earthquake of November 12, 1999, Turkish earthquake foundation
- Aydan O., Ulusay R., Miyajima M. (2003), The Bingol earthquake of May 1, 2003, Japan society of civil engineers
- Berg G.V. (1977), Earthquake in Romania, march 4, 1977. A preliminary report to Earthquake engineering research institute. Newsletter earthquake engineering research institute volume 11, n. 3B
- Bindi D., Pacor F., Luzi L., Puglia R., Massa M., Ameri G., Paolucci R. (2011), Ground motion prediction equations derived from the Italian strong motion database, Bulletin of Earthquake Engineering, 9(1): 1899-1920
- Bommer J., Akkar S. (2012), Consistent source-to-site distance metrics in ground-motion prediction equations and seismic source models for PSHA, Earthquake spectra, 28, N.1 p 1-15
- Bozzoni, F., Lai, C.G., Martinelli, M. (2012), Liquefazione: confronto tra effetti osservati e valutazioni preliminari della suscettibilità, Progettazione Sismica. Vol. 1, No. 3, Settembre-Dicembre 2012, pp. 95-108
- Bradley B.A. (2011), Correlation of significant duration with amplitude and cumulative intensity measures and its use in ground motion selection, Journal of Earthquake Engineering 15, 809– 832
- Burchifiel et al. (2006), GPS results for Macedonia and its importance for the tectonics of the Southern Balkan extensional regime, Tectonophysics 413 (2006), 239 248
- Burkhard M., Grünthal G., (2009), Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b), Swiss J. Geosci. 102, no. 1, 149-188
- Cetin K.O. et al. (2011), Van-Tabanli earthquake (Mw=7.1) October 23rd, 2011. Preliminary reconnaissance report. Earthquake engineering research center
- Constantin A.P. (2010), Vrancea (Romania) subcrustal earthquakes: historical sources and macroseismic intensity assessment. Rom. Journ. Phys. Vol. 56, p. 813-826
- De Alba et al. (1976), Sand liquefaction in large-scale simple tests. Journal of the soil mechanics and foundations division 102
- Dobry R., Ladd R., Yokel F., Chung R., Powell D. (1982), Prediction of Pore Water Pressure Buildup and Liquefaction of Sands during Earthquakes by the Cyclic Strain Method, NBS Building Science Series 138, National Bureau of Standards, Washington, DC
- Dragojević D. (2010), Izveštaj o rezultatima i aktivnostima Republi kog seizmološkog zavoda posle zemljotresa kod Kraljeva 03.11.2010 u 01:56, Seismological survey of Serbia
- EERI (2003), Preliminary observations of the August 14.2003, Lefkas island (western Greece) earthquake, EERI Special earthquake report, November 2003
- Erdik et al. (1994), March 13, 1992 Erzincan (Turkey) earthquake, Earthquake engineering tenth world conference
- Erdik M. (1999), Report on 1999 Kocaeli and Duzce (Turkey) Earthquakes. Bogazici University, Dep. of earthquake Engineering

- Eurocode 8 (2003). Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings, Pr-EN1998-1, European Committee for Standardization (CEN), Brussels
- Galli P. (2000), New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324, 169-187
- Ganas A., Briole P., Papathanassiou G., Bozionelos G., Avallone A., Melgar D., Argyrakis P., Valkaniotis S., Menonidis E., Moshou A., Elias P. (2015), A preliminary report on the November 17, 2015 M=6.4 south Lefkada earthquake Ionian sea, Greece
- Grecu B., Milutinovic Z. (2012), Geohazard assessment and mapping of some Balkan countries, natural hazards
- Green R.A., Bommer J.J. (2018), Smallest Earthquake Magnitude that Can Trigger Liquefaction, Report of a study performed by the Virginia Tech Center for Geotechnical Practice and Research, March 2018, CGPR # 92.
- Grunthal G., Wahlstrom R. (2012), The European-Mediterranean earthquake catalogue (EMEC) for the last millennium, Journal of seismology 16: 535-570
- Grunthal G., Wahlstrom R. (2013), The SHARE European earthquake catalogue (SHEEC) for the time period 1900-2006 and its comparison to the European-Mediterranean earthquake catalogue (EMEC), Journal of seismology 17: 1339-1344
- Gyori E. (2015), Secondary effects generated by earthquakes: liquefaction occurrences in and around Hungary, Acta Geod. Geophys 50, 79-95
- Hamova M., Frangov G. (2015), Soil liquefaction in Bulgaria examples prognoses and countermeasures, Proceedings of the XVI ECSMGE, Geotechnical engineering for infrastructure and development
- Hannich D. et al. (2007), Liquefaction probability in Bucarest and influencing factors, Int. symposium on strong Vrancea Earthquake and risk mitigation oct. 4-6, 2007 Bucarest, Romania
- Herak D. (2009), Seimicity and earthquake focal mechanisms in north-western Croatia, Tectonophysics 465, 212-220
- Herak D. (2010), The Kupa Valley (Croatia) earthquake of 8 October 1909 100 years later, Seismological Research letters, Vol. 81 n. 1
- Ishihara K. (1984), Liquefaction-associated ground damage during the Vrancea earthquake of March 4,1997, Soils and foundations Vol 24, n.1, 90-112
- Ishihara K. (1985), Stability of natural deposits during earthquakes, Proc. 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol. 2, pp. 321-376
- Italian Building Code NTC18 (2018), Consiglio superiore dei Lavori Pubblici, Norme tecniche per le costruzioni NTC18, D.M. 17/01/2018
- Kadirioglu F.T., Kartal R. F. (2016), The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900-2012), Turkish Journal of earth sciences (2016) 25:300-310
- Karakas A., Coruk O. (2013), Engineering geologic assessment of the slope movements and liquefaction failures of the 23 October 2011 Van earthquake (Mw=7.2), Natural hazards and earth system sciences

- Karakostas C., Lekidis V., makra K., Margaris B., Morfidis K., Papaioannou C., Rovithis M., Salonikios T., Savvaidis A., Theodoulidis M., (2014), Strong ground motion of the February 3, 2014 (M6.0) Cephalonia earthquake: effects on soil and built environment in combination with the Jan. 26, 2014 (M6.1) event, Institute of engineering seismology & earthquake engineering (ITSAK)
- Kaybali K. (1997), The role of soil behavior on damage caused by the Dinar earthquake (southwestern Turkey) of October 1, 1995, Environmental and engineering geoscience
- Kazantzidou-Firtinidou D. (2016), The November 2015 Mw6.4 earthquake effects in Lefkas island, 1st international conference on natural hazard & infrastructure
- Kociu S. (2004), Induced Seismic impacts observed in coastal area of Albania: case studies. Fifth international conference on case histories in geotechnical engineering
- o Kramer S.L., Mayfield R.T. (2007), Return period of soil liquefaction, Journal of Geotechnical
- Kuribayashi E., Tatsuoka F., (1975), Brief review of liquefaction during earthquakes in Japan, Soils and foundations n. 15 pp 81-92
- Lai et al. (2015), Soil liquefaction during the 20 May 2012 M5.9 Emilia earthquake, northern Italy: field reconnaissance and post event assessment, Earthquake spectra, volume 31, n 4, pages 2351-2373
- Lander J.F. (1969), Seismological notes September and October 1968, Bulletin of the seismological society of America Vol 59 n. 2, 1023-1030
- Lasley S., Green R.A., Rodriguez-Marek A. (2017), Number of equivalent stress cycles for liquefaction evaluations in active tectonic and stable continental regimes, Journal of Geotechnical and Geoenvironmental Engineering 143, 04016116-1.
- Lekkas E. (2018), Earthquake environmental effects, building damage and intensities of the November 17, 2015 Mw 6.4 Lefkas earthquake (Ionian sea, western Greece), Geotechnical and Geological Engineering

liquefaction triggering. Soil Dynamics & Earthquake Engineering, submitted

- Locati M., Rovida A, Albini P., Stucchi M. (2014), The AHEAD portal: a gateway to European historical earthquake data, Seismological research letters vol. 85 n. 3
- Makropoulos et al. (2012), An updated and extended earthquake catalogue for Greece and adjacents areas since 1900, Nat. Hazards earth Syst. Sci. 12, 1425-1430
- Markusic S. (2008), Seismicity of Croatia, Earthquake monitoring and seismic hazard mitigation in Balkans Countries, E.S. Husbye ed.
- Martino et al. (2012), New release of the Italian catalogue of earthquake-induced ground failures (CEDIT), Italian journal of engineering geology and environment, 2
- Obermeier S.F., (1996), Using liquefaction-induced features for paleoseismic analysis, In: McCalpin, J. (ed.), Pleoseismology. Academic press, San Diego, 588pp.
- Ozcebe G., Ramirez J. Tanvir Wast S., Yakut A. (2003), 1 May 2003 Bingol earthquake engineering report
- Papadopoulos A. (1990), Macroseismic observation related with the strong shock of October 16th, 1988, in NW Peloponnesus, Greece: the important role of the microzonation conditions, Journal of geodynamics 12, 217-231

- Papadopoulos G.A., Lefkopoulos G., (1993), Magnitude-distance relations for liquefaction in soil from earthquakes, Bulletin of the seismological society of America vol. 82 n.3 pp925-938
- Papastamatiou D. (1986), The earthquake of April 30,1954, in Sophades (Central Greece), Gephys. J. R. astr. Soc, 87, 885-895
- Papathanassiou G. (2004). Liquefaction case histories and empirical relations of earthquake magnitude versus distance from the broader Aegean region. Journal of Geodynamics 40, 257-278
- Papathanassiou G. (2005), Liquefaction-induced ground surface disruption. Case study from 2003 Lefkas (Greece) earthquake.
- Papathanassiou G. (2005), The 2003 Lefkada earthquake: field observations and preliminary microzonation map based on liquefaction potential index for the town of Lefkada. Engineering geology 82, 12-31
- Papatheodorou G. (1997), Submarine and coastal sediment failure triggered by the 1995, Ms=6.1 Aegion earthquake, gulf of Corinth, Greece, Marine geology 137, 287-304
- Pavlides et al. (2013), Rock-falls and liquefaction related phenomena triggered by the June 8, 2008, Mw=6.4 earthquake in NW Peloponnesus, Greece, Annals of geophysics, 56, 6.
- Peterson et al. (2008), Documentation for the 2008 update of the United States national seismic hazard maps, Open-file report 2008-1128, U.S. department of the interior, U.S. geological survey
- Pirrotta C. (2007), A new dataset and empirical relationships between magnitude/intensity and epicentral distance for liquefaction in central-eastern Sicily. Annals of geophysics. Vol 50. N 6
- Poiata N, Miyake H. (2006), Broadband ground motion simulation of Romanian earthquakes using empirical Green's function method, First European conference on earthquake engineering and seismology, paper No. 506
- Rodriguez-Arriaga E., Green R.A. (2018), Assessment of the cyclic strain approach for calculating
- Rogozea M. (2014), Reevaluation of macroseismic effects of the 23 January 1838 Vrancea earthquake, Romanian reports in physics, vol. 66, N. 2, pp.520-538
- Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (2016), CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia.
- Santucci de Magistris F., Lanzano G., Forte G., Fabbrocino G. (2013) A database for PGA threshold in liquefaction occurrence, Soil Dynamics & Earthquake Engineering 54, 17-19.
- Seed H.B., Idriss L.M. (1971), Semplified procedure for evaluating soil liquefaction potential, Journal of Geotechnical Engineering division 97 (9): 1249-1273
- Seed H.B., Idriss L.M. (1982), Ground motions and soil liquefaction during earthquakes. Oakland CA: Earthquake Engineering research institute
- Selcuk L., Aydin H. (2013), The role of soil behavior on structural damages during 2011 Van (Turkey) earthquake, International journal of geological sciences Vol 1, N. 1
- Sesetyan et al. (2014), SHARE-CET, the SHARE earthquake catalogue for central and Eastern Turkey complementing the SHARE European Earthquake Catalogue (SHEEC), (https://www.emidius.eu/SHEEC/)

- Sims, J.D., Garvin. C.D. (1995). Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and the 1991 aftershocks: Implications for paleoseismicity studies. Bulletin of the Seismological Society of America 85(1):51–65.
- Sonmez H. (2003), Modification of the liquefaction potential index and liquefaction susceptibility mapping fog a liquefaction-prone area (Inegol, Turkey), Environmental Geology 44:862-871
- Stucchi et al., (2012). The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. Journal of Seismology, doi: 10.1007/s10950-012-9335-2
- Talaganov K. (1979), Analysis of soil liquefaction during 1979 Montenegro earthquake
- Talaganov K. (1981), Soil liquefaction seismic risk analysis based on post 1979 earthquake observations in Montenegro, First international conference on recent advances in geotechnical earthquake engineering & soil dinamics
- Talwani P., Schaeffer W. (2001), Recurrence rates of large earthquakes in the South Carolina coastal plain based on paleoliquefaction data. Journal of Geophysical Research
- Tan et al. (2008), The earthquake catalogues for Turkey, Turkish journal of earth sciences vol17, 2008, pp 405-418
- Tasdemiroglu M. (1971), The 1970 Gediz earthquake in western Anatolia, Turkey, Bulletin of the seismological society of America Vol 61. N 6, 1507-1527
- Turan A. (2015), Evaluation of liquefaction in Ercis plain during Van earthquake, International journal of geohazards and environment 1(2): 63-75
- Ulusay et al. (2004), An overview of geotechnical aspects of the Cay-Eber (Turkey) earthquake, Engineering geology 73: 51-70
- Ulusay R., Aydan O., Miyajima M. (2004), The liquefaction and flow of vulcanic sediments at Hancayiri induced by the May 1, 2003 Bingol earthquake, 13th world conference on earthquake engineering, paper n. 2921
- Unjoh S., Kaneko M., Kataoka S., Nagaya K., Matsuoka K., (2012), Effect of earthquake ground motions on soil liquefaction, Soils and foundations 52(5): 830-841
- Valkaniotis S. et al (2014), Field observations of geological effects triggered by the January-February 2014 Cephalonia (Ionian sea, Greece) earthquakes, Tectonophysics
- Veinovic Z. (2010), Preparatory works for liquefaction microzonation in Croatia, Faculty of mining, geology and petroleum engineering university of Zagreb
- Wenk T., Lacave C., Peter K. (1998), The Adana-Ceyhan earthquake of June 27, 1998. Report on the reconnaissance mission from July 6-12, 1998. Swiss society of earthquake engineering and structural dynamics (SGEB)
- Williams M.S., Pomonis A., Booth E.D. Vaciago G., Ring S. (1992), The Erzincan, Turkey earthquake of 13 March 1992, A field report by EEFIT, Earthquake engineering field investigation team, institution of structural engineers London
- Yener E., Erdogan O., Akkar S. (2008), Empirical relationships for magnitude and source-to-site distance conversion using recently compiled turkish strong-ground motion database, The 14th world conference on erathquake engineering October 12-17, 2008, Bejing, China
- Youd T.L. (1977), Discussion of "Brief review of liquefaction during earthquakes in Japan" by E.
 Kuribayashi and F. Tatsuoka, Soils and foundations, Vol.17 n.1 pp 82-85

- Youd T.L., Hoose S. N. (1977), Liquefaction susceptibility and geologic setting. Proceeding of the Sixth World Conference on Earthquake Engineering. Englewood Cliffs, NJ: Prentice Hall
- Youd T.L., Perkins D.M. (1978), Mapping liquefaction-induced ground failure potential. Journal of the Geotechnical Engineering Division. ASCE 104
- Zhou Y.G., Liu K., Ling D.S., Chen Y-M. (2018), Threshold seismic energy and liquefaction distance limit during the 2008 Wenchuan earthquake, Bull Earthquake Eng, 16:5151-5170
- o Zsiros T. (2009), Seismicity of Kecskemet area, Acta Geod. Geoph. Hung. Vol 44, pp 343-356
- Zuccolo E., Corigliano M., Lai C.G. (2013), Probabilistic seismic hazard assessment of Italy using kernel estimation methods. Journal of Seismology, 17 (3): 1001-1020

LIQUEFACT Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

			EARTHQUA	KES PARA	METERS				LIQUEFIED SITE PARAMETERS					
	Country	Date	Location	Latitude	Longitude	м	Туре	l₀ (MCS)	Depth [km]	Latitude	Longitude	Liquefied site	Repic [km]	Ripo Liquefaction Type [km]
1	Italy	1117.01.03	Verona Area	45,267	11,015	6,52	Mw	9		45,434	12,339	Venezia	105,14	Water Ejection
2	Italy	1169.02.04	South-Eastern Sicily	37,215	14,949	6,5	Mw	10		37,38	15,05	Catania	20,41	B1
3	Italy	1169.02.04	South-Eastern Sicily	37,215	14,949	6,5	Mw	10		37,082	15,285	Siracusa	33,26	B1, C2
4	Italy	1169.02.04	South-Eastern Sicily	37,215	14,949	6,5	Mw	10		37,284	14,998	Lentini	8,82	C2
5	Italy	1169.02.04	South-Eastern Sicily	37,215	14,949	6,5	Mw	10		37,07	15	Catania/Val di Noto	16,75	C2
6	Italy	1169.02.04	South-Eastern Sicily	37,215	14,949	6,5	Mw	10		38,187	15,529	Messina	119,55	B2
7	Italy	1348.01.25	Carnia	46,504	13,581	6,63	Mw	9		46,609	13,851	Villach (A)	23,72	Ground fracture Water ejection
8	Spain	1431.04.24	Lefkas Isle	37,125	-3,626	6,11	Mw	8_9		37,19	-3,54		10,51	Unspecified
9	Spain	1504.04.05	Lefkas Isle	37,598	-5,725	6,03	Mw	8		37,46	-5,64	Carmona	17,08	Unspecified
10	Italy	1505.01.03	Bologna Area	44,507	11,23	5,62	Mw	8		44,492	11,21	Zola Predosa	2,30	Liquefaction
11	Turkey	1509.09.10	Thrace	41,022	28,786	7,14	Mw	10				Instanbul	15,00	A1
12	Turkey	1509.09.10	Thrace	41,022	28,786	7,14	Mw	10				Pera	17,00	A1
13	Portugal	1531.01.26	Lisboa	38,981	-8,931	6,47	Mw	9		39,21	-8,62	Almeirim	37,01	Unspecified
14	Portugal	1531.01.26	Lisboa	38,981	-8,931	6,47	Mw	9		38,98	-8,8	Benavente	11,33	Unspecified
15	Portugal	1531.01.26	Lisboa	38,981	-8,931	6,47	Mw	9		39,23	-8,68	Santarem	35,16	Unspecified
16	Portugal	1531.01.26	Lisboa	38,981	-8,931	6,47	Mw	9		38,72	-8,68	Lisboa	36,27	Unspecified
17	Portugal	1531.01.26	Lisboa	38,981	-8,931	6,47	Mw	9		38,66	-9,055	Lavradio	37,29	Unspecified
18	Portugal	1531.01.26	Lisboa	38,981	-8,931	6,47	Mw	9		38,52	-8,89	Setubal	51,40	Unspecified
19	Portugal	1531.01.26	Lisboa	38,981	-8,931	6,47	Mw	9		38,37	-8,51	Alcacer do Sal	77,17	Unspecified
20	Italy	1542.06.13	Mugello	44,006	11,385	6,02	Mw	9		43,956	11,385	Borgo S. Lorenzo	5,56	Water Ejection
21	Italy	1542.12.10	South-Eastern Sicily	37,215	14,944	6,68	Mw	10		37,231	15,221	Augusta	24,60	A
22	Italy	1542.12.10	South-Eastern Sicily	37,215	14,944	6,68	Mw	10		37,082	15,285	Siracusa	33,66	А
23	Italy	1545.06.09	Val di Taro	44,473	9,825	5,38	M _w	7_8		44,376	9,878	Pontremoli	11,58	Ground fracture Water ejection Sand Boils
24	Italy	1561.08.19	Vallo di Diano	40,563	15,505	6,72	M_{w}	10		40,753	15,486	Muro Lucano	21,19	Ground fracture Sand Boils
25	Italy	1570.11.17	Ferrara Area	44,824	11,632	5,44	Mw	7_8		44,865	11,685	Boara	6,19	Ground cracks Water ejection
26	Italy	1570.11.17	Ferrara Area	44,824	11,632	5,44	M_{w}	7_8		44,838	11,612	Ferrara	2,22	Fracture with gas emission
27	Italy	1570.11.17	Ferrara Area	44,824	11,632	5,44	Mw	7_8		44,955	11,435	Ficarolo- Ficardo	21,29	Ground cracks water sand ejection
28	Italy	1570.11.17	Ferrara Area	44,824	11,632	5,44	M_{w}	7_8		44,808	11,692	Ferrara- Giara del Po	5,06	Ground cracks water sand ejection
29	Italy	1570.11.17	Ferrara Area	44,824	11,632	5,44	Mw	7_8		44,82	11,67	Ferrara- La Punta	3,03	Sand water ejection
30	Italy	1570.11.17	Ferrara Area	44,824	11,632	5,44	M_{w}	7_8		44,83	11,63	Ferrara- Polesino San Giovanni Battista	0,69	Ground cracks water sand ejection
31	Italy	1570.11.17	Ferrara Area	44,824	11,632	5,44	Mw	7_8		44,82	11,625	Ferrara - Polesino San Giorgio	0,71	Ground cracks water sand ejection
32	Italy	1570.11.17	Ferrara Area	44,824	11,632	5,44	Mw	7_8		44,795	11,62	Ferrara- Torre della Fossa	3,36	Ground cracks water sand ejection
33	Italy	1624.03.18	Argenta	44,642	11,848	5,43	Mw	7_8		44,617	11,836	Argenta	2,94	Ground cracks water sand ejection
34	Italy	1624.03.18	Argenta	44,642	11,848	5,43	M_{w}	7_8		44,838	11,612	Ferrara	28,69	Ground cracks water sand ejection sand boils
35	Italy	1624.10.03	Monti Iblei Settentrionali	37,27	14,742	5,56	Mw	8		37,326	14,745	Palagonia	6,23	C2
36	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	Mw	10		41,866	15,35	Lesina	14,36	С

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

37	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	Mw	10	41,85	15,284	Ripalta	13,46	с
38	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	M _w	10	41,917	15,283	Serracapriola- Foci del Fortore	20,61	Liquefaction ground cracks water sand emission
39	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	M_{w}	10	41,833	15,233	Serracapriola- Serra S. Agata (Valle d. Fortore)	13,99	Ground cracks water sand ejection
40	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	Mw	10	41,361	15,309	Troia	41,91	water sand ejection
41	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	Mw	10	41,783	15,217	La Taverna	11,56	Sand boils
42	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	Mw	10	41,739	15,261	San Paolo Civitate	6,73	Ground cracks sand boils
43	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	Mw	10	41,682	15,38	San Severo	6,88	Ground cracks water ejection
44	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	Mw	10	41,688	15,292	Torremaggiore	6,85	Ground cracks water sand ejection
45	Italy	1627.07.30	Capitanata	41,737	15,342	6,66	Mw	10	42	14,991	Termoli	41,24	Water Ejection
46	Italy	1638.03.27	Central Calabria	39,048	16,289	7,09	Mw	11	38,664	16,284	San Nicola da Carissa	42,71	Water ejection subsidence
47	Italy	1638.03.27	Central Calabria	39,048	16,289	7,09	M_{w}	11	38,9	16,25	Nicastro-Sanbiase, Valle del F. Lamato	16,80	water sand ejection
48	Italy	1638.03.27	Central Calabria	39,048	16,289	7,09	M_{w}	11	38,933	16,25	Nicastro- Sambiase, Sant'Eufemia	13,23	sand boils subsidence
49	Turkey	1653.02.22	Aydin	37,86	27,8	6,72	Mw	10			Guzelhisar	7,00	B1
50	Italy	1661.03.22	Appennino Forlivese	44,021	11,898	6,05	M_{w}	9	44,063	11,848	Rocca San Casciano	6,15	Ground cracks water ejectin sand boils
51	Italy	1688.06.05	Sannio	41,283	14,561	7,06	Mw	11	41,266	14,9	S. Giorgio la Molara	28,40	B, C
52	Italy	1688.06.05	Sannio	41,283	14,561	7,06	Mw	11	41,328	14,331	Alife	19,86	Ground cracks water ejection
53	Italy	1688.06.05	Sannio	41,283	14,561	7,06	Mw	11	41,358	14,375	Piedimonte Matese	17,64	Ground cracks water ejection
54	Italy	1688.06.05	Sannio	41,283	14,561	7,06	Mw	11	41,287	14,559	Cerreto Sannita	0,48	Water ejection
55	Italy	1688.06.05	Sannio	41,283	14,561	7,06	Mw	11	41,131	14,777	Benevento	24,75	Unspecified
56	Turkey	1688.07.10	Izmir	38,38	27,17	6,82	Mw	10			Izmir	6,00	A1, A3
57	Turkey	1688.07.10	Izmir	38,38	27,17	6,82	Mw	10			Sancak Burnu	12,00	A3
58	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,266	14,69	Mineo	31,86	B1
59	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	36,94	15,023	Noto Antica	22,26	B1
60	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	36,9	15,06	Scala	27,02	B1
61	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,156	15,027	Sortino	2,17	B1, B2
62	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,082	15,285	Siracusa	24,97	B1, C2, A, C1
63	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,566	14,902	Paternò	48,39	B3
64	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,179	15,128	Melilli	11,08	C1
65	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,221	15,221	Augusta	20,52	C1
66	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	M_w	11	38,187	15,529	Messina	125,00	C1, B1
67	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	M_w	11	37,384	14,368	Piazza Armerina	63,22	C2
68	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	38,177	15,529	Messina	123,97	C2
69	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,231	15,221	Augusta	21,03	C2
70	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	36,908	15,135	Avola	27,99	А
71	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,757	15,159	Mascali	69,83	A, C2
72	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	M_w	11	37,284	14,998	Lentini	16,07	B1, A, C2
73	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,502	15,087	Catania	40,79	B1, A, C2
74	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,502	15,087	Piana di Catania	40,79	C2, A
75	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	M_{w}	11	37,07	15	Val di Noto	7,87	B2

Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

76	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,097	14,937	Cassaro	8,26	Ground cracks sand boils
77	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	38,121	14,79	Naso	110,87	Unspecified
78	Italy	1693.01.11	South-Eastern Sicily	37,14	15,013	7,32	Mw	11	37,12	14,94	Ferla	6,84	Sand boils
79	Italy	1703.02.02	L'Aquila Area	42,434	13,292	6,67	Mw	10	42,524	13,24	Montereale	10,88	Water ejection
80	Italy	1703.02.02	L'Aquila Area	42,434	13,292	6,67	Mw	10	42,437	13,295	Pizzoli	0,41	water sand ejection
81	Turkey	1719.05.25	Izmit	40,66	29,58	6,75	Mw	10			Izmit	33,00	B1
82	Italy	1731.03.20	Tavoliere delle Puglie	41,274	15,757	6,33	Mw	9	41,464	15,544	Foggia	27,62	Water ejection sand boils
83	Turkey	1739.04.04	Izmir	38,5	26,9	6,78	Mw	9			Old Foca	22,00	A1
84	Turkey	1739.04.04	Izmir	38,5	26,9	6,78	Mw	9			Gediz r. (Delta)	14,00	A3
85	Spain	1751.03.04	Velez Rubio	37,65	-2,066	5,08	Mw	6_7	37,64	-2,07	Velez Rubio	1,17	Unspecified
86	Italy	1753.03.09	Valle del Chisone	44,941	7,181	5,16	Mw	6_7	45,135	7,046	Susa	24,05	Ground cracks water ejection
87	Italy	1753.03.09	Valle del Chisone	44,941	7,181	5,16	Mw	6_7	44,885	7,332	Pinerolo	13,43	Ground cracks water ejection
88	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	37,31	-8,79	Aljezur	155,46	Unspecified
89	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	37,1	-8,67	Lagos	162,83	Unspecified
90	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,46	-8,19	Abrantes	339,97	Unspecified
91	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,98	-8,8	Benavente	265,90	Unspecified
92	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,96	-8,52	Coruche	278,66	Unspecified
93	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,54	-8,27	Aldeia do Mato	343,10	Unspecified
94	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,98	-8,28	Couço	293,87	Unspecified
95	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,65	-8,57	Caissa	339,44	Unspecified
96	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,76	-8,45	Freixianda	355,20	Unspecified
97	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,705	-9,144	C.Sodrè	223,93	Unspecified
98	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,708	-9,145	Largo de S.Paulo	224,16	Unspecified
99	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,705	-9,14	Av. Das Ribeiras das Naus	224,11	Unspecified
100	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_w	10	38,707	-9,136	Terreiro do Paço	224,49	Unspecified
101	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,702	-9,17	Alcantara	222,44	Unspecified
102	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_w	10	38,728	-9,109	Xabregas	227,72	Unspecified
103	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,79	-9,104	Sacavém	233,77	Unspecified
104	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,701	-9,25	Cruz Quebrada	218,73	Unspecified
105	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,69	-9,42	Cascais	210,55	Unspecified
106	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_w	10	38,67	-9,23	Trafaria	216,67	Unspecified
107	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,83	-9,17	Loures	234,62	Unspecified
108	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_w	10	38,52	-8,89	Setùbal	220,50	Unspecified
109	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	38,51	-9,01	Azeitao	213,01	Unspecified
110	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_w	10	38,94	-9,33	Mafra	238,92	Unspecified
111	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,06	-9,2	Runa	255,86	Unspecified
112	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_w	10	39,54	-8,97	Alcobaça	312,50	Unspecified
113	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,65	-8,82	Batalha	329,17	Unspecified
114	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_w	10	39,7	-8,83	Azoia	333,76	Unspecified
115	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,75	-8,84	Barosa	338,37	Unspecified
116	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,89	-8,88	Coimbrao	351,04	Unspecified
117	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_{w}	10	39,84	-8,87	Monte Real	346,33	Unspecified
118	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10	39,89	-8,83	Monte Redondo	352,81	Unspecified
119	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	M_{w}	10	39,84	-8,83	Souto da Carpalhosa	347,77	Unspecified

LIQUEFACT

Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

120	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		39,85	-8,95	Vieira	344,55		Unspecified
121	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		39,75	-8,92	Marinha Grande	335,45		Unspecified
122	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		39,91	-8,69	Pombal (Juncal)	360,00		Unspecified
123	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		39,6	-8,81	Porto de Mòs	324,62		Unspecified
124	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,1	-8,63	Vila Nova de Anços	381,22		Unspecified
125	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,16	-8,75	Maiorca	382,98		Unspecified
126	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,44	-8,75	Lagoa de Mira	411,63		Unspecified
127	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,44	-8,72	Lagoa de Portomar	412,60		Unspecified
128	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,17	-8,68	Colegiado	386,44		Unspecified
129	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,17	-8,68	Campo de Cima	386,44		Unspecified
130	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,17	-8,68	S.Martinho	386,44		Unspecified
131	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,12	-8,68	Vila Nova de Barca	381,40		Unspecified
132	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,15	-8,65	Alfarelos	385,50		Unspecified
133	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,15	-8,65	Gestaria	385,50		Unspecified
134	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,1	-8,63	Vila Nova de Anços	381,22		Unspecified
135	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,63	-8,47	Lamas do Vouga (Vila Verde)	440,38		Unspecified
136	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,64	-8,66	Aveiro (Vera Cruz)	435,10		Unspecified
137	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		41,04	-8,27	Castelo de Paiva (Bairros)	488,88		Unspecified
138	Portugal	1755.11.01	Epicenter Offshore	37	-10,5	8,5	Mw	10		40,92	-8,54	Feira	467,76		Unspecified
139	Croatia	1757.06.27	Virovitica	45,800	17,400	6,42	Mw	9		45,832	17,385	Virovitica	3,75		Sand boils Ground cracks
140	Hungary	1763.06.28	Komaron	47,825	18,269	5,7	Mw	89	7,6	47,752	18,138	Komaron Turtle's tail	12,68	14,78	Liquefaction lateral spreading
141	Hungary	1763.06.28	Komaron	47,825	18,269	5,7	Mw	89	7,6	47,699	17,636	Révfalu	49,36	49,94	sand boils
142	Hungary	1763.06.28	Komaron	47,825	18,269	5,7	Mw	89	7,6	47,952	17,648	Csallóköz (Žitný ostrov)	48,43	49,02	sand boils
143	Hungary	1763.06.28	Komaron	47,825	18,269	5,7	 M _w	_ 8_9	7,6	47,812	17,863	Nemesolcsa (Zemianska Olca)	30,40	31,33	sand boils
144	Hungary	1763 06 28	Komaron	47 825	18 269	57	M	89	76	47 725	17 883	Nagykeszi (Veľké Kosihy)	30.92	31.84	sand boils
145	Hungary	1763.06.28	Komaron	47 825	18 269	5,7	M	8.9	7.6	47 819	17 984	Megyercs (Calovec)	21 33	22.65	sand boils
146	Hungary	1763 06 28	Komaron	47 825	18 269	5.7	M	8.9	7.6	47 752	17 820	Kolozsnéma (Klížska Nemá)	34 52	35 35	sand boils
147	Hungary	1763.06.28	Komaron	47 825	18 269	5.7	M	8.9	7.6	47 924	18 750	Kiskeszi (Malé Kosihy)	37.51	38.28	sand boils
148	Hungary	1763.06.28	Komaron	47 825	18 269	5.7	M	8.9	7.6	47,820	18 041	Keszegfalya (Kamenicná)	17.06	18.68	sand boils
140	Hungary	1763.06.28	Komaron	47 825	18 269	5,7	M	8.9	7.6	47,918	17 995	Guta (Kolárovo)	22.94	24 16	sand boils
150	Hungary	1763.06.28	Komaron	47 825	18 269	5.7	M	8.9	7.6	47,815	17 921	Ekel (Okolic [°] ná na Ostrove)	26.10	27.19	sand boils
151	Hungary	1763.06.28	Komaron	47 825	18 269	5,7	M	8.9	7.6	47,565	17 769	Csicsó (Cícov)	37.87	38.62	sand boils
151	Hungary	1763.06.28	Komaron	47,825	18,269	5,7	Mw	8_9	7,6	47,772	17,972	Csallóközaranyos (Zlatná na Ostove)	22,97	24,19	sand boils
153	Hungary	1763 06 28	Komaron	47 825	18 269	57	M	89	76	47 764	18 044	Örsuifalu (Nová Stráž)	18 10	19.63	sand boils
154	Hungary	1763.06.28	Komaron	47 825	18 269	5.7	M	8.9	7.6	47 822	18 354	Madar (Modrany)	6 33	9.89	sand boils
155	Turkey	1766.05.22	Instanbul	40.8	29.1	6.76	M	9	,,0	.,,011	10,001	Galata Coast	28.00	5,05	A3 B3
156	Greece	1767 07 11	Lyxouri	38.3	20.4	6.65	M	10				Argostoli	15.00		82
157	Greece	1767 07 11	Lyxouri	38.3	20,4	6 65	M	10				Paliki Peninsula	10.00		C
158	Turkey	1778 07 03	Izmir	38.4	26.8	6 55	M	9				Izmir	30.00		A1
159	Turkey	1778.07.03	Izmir	38.4	26.8	6.55	Mw	9				Urla	4.00		A3
160	Italy	1780.03.28	North-Eastern Sicily	37.866	15.316	5.52	M.,	7.8		38.02	15.38	Fiumedinisi	18.03		C2
	,					-,	w			,			,		

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

161	Italy	1781.04.04	Faenza Area	44,251	11,798	6,12	M _w	9_10	44,319	11,801	Castel Bolognese	7,57	Ground cracks water ejection sand boils
162	Italy	1781.04.04	Faenza Area	44,251	11,798	6,12	Mw	9_10	44,276	11,805	Pergola	2,84	Ground cracks sand boils
163	Italy	1781.04.04	Faenza Area	44,251	11,798	6,12	Mw	9_10	44,25	11,81	Montefortino- Quartolo	0,96	Ground cracks
164	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,258	15,611	Ganzirri	31,64	B1
165	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,187	15,529	Messina	40,42	B1, B2
166	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,187	15,549	Messina	38,76	C2
167	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,233	15,916	Pedavoli [2]	8,54	A1, A3-5
168	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,325	15,944	River S.Biase [Fiumara Boscaino]	3,85	A4-5
169	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,404	16,094	Cinquefrondi (Ventriconi)	16,08	А5
170	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,083	16,083	Caraffa del Bianco [1]	25,77	A1, A4-5
171	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,333	16,033	Galatoni *[1]	6,80	A1, A4-5
172	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,266	15,65	Torre Faro	28,15	A1, A4-5
173	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,667	16,1	Monteleone [Vibo Valentia] [1]	42,68	A1, A4-5
174	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,35	16,083	Casalnuovo [Cittanova]	11,49	A1, A4-5, B
175	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,616	16,183	River Porcione*[R.Marepotamo] [1]	40,04	А1, В, Е
176	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,3	15,983	Tresilico	1,18	A1-2, B
177	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,283	15,916	Trodi [1]	4,96	A2, D
178	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,283	15,804	Bagnara Calabra* [1]	14,58	В
179	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,916	16,583	Catanzaro [1]	87,06	В
180	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,443	15,95	Drosi*(C. del Crocifisso)	16,33	В
181	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,016	15,733	Laganadi [1]	37,50	В
182	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,833	16,516	San Floro* [1]	76,22	В
183	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,583	16,333	Serra S. Bruno [1]	44,86	В
184	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,6	16,233	Soriano Calabro [1]	40,75	С
185	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,555	16,19	Acquaro	34,51	Ground cracks water ejection sand boils
186	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,511	16,069	Oppido Mamertina- Borello (Fondaco di)	25,32	Ground cracks water ejection sand boils
187	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,184	15,724	Calanna	24,90	Ground cracks sand boils
188	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,317	15,933	Castellace Vecchio	3,92	sand boils subsidence
189	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,418	16,095	Cinque Frondi	17,32	Ground cracks water ejection sand boils
190	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,6	15,867	Joppolo- Coccorino	34,88	Ground cracks
191	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,274	15,928	Cosoleto	4,47	Ground cracks sand boils
192	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,567	16,2	Dasà	36,10	Ground cracks water ejection sand boils
193	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,233	15,917	Delianuova- Paracorio	8,49	Ground cracks water ejection sand boils

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

194	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_w	11	38,211	15,692	San Nicola- Fiumara	26,10	Ground cracks water ejection sand boils
195	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,171	15,663	Reggio Calabria- Gallico	30,26	Sand boils
196	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,592	16,217	Gerocarne- Soriano Calabro	39,24	Ground cracks water sand ejection
197	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,431	15,898	Gioia Tauro	16,17	Subisdence water ejection
198	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,583	15,9	Joppolo	32,39	Ground cracks water sand ejection
199	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,497	16,081	Laureana di Borrello	24,26	Ground cracks water sand ejection
200	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,267	15,95	Santa Cristina D'Aspromonte- Lubrichi	3,77	Ground cracks water ejection sand boils subsidence
201	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,859	16,365	Maida	71,32	Ground cracks water ejection sand boils
202	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,441	16,097	Maropati	19,47	Sand boils
203	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,554	15,938	Nicotera	28,72	Water ejection
204	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,289	15,984	Oppido Mamertina	1,51	Ground cracks water sand ejection
205	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,3	15,95	Oppido Mamertina- Contrada Nicolella	1,78	Sand boils
206	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,288	15,972	Oppido Mamertina- Fondaco Tricuccio	1,02	water sand ejection
207	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,359	15,848	Palmi	12,68	Sand boils
208	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,407	16,074	Polistena	15,23	Ground cracks water ejection sand boils subsidence
209	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,35	16,017	Taurianova- Radicena	7,18	Ground cracks water ejection sand boils subsidence
210	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,119	15,653	Reggio Calabria	34,05	Sand boils
211	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,617	16,15	Francica-Rise del R. Mesima	38,89	Water ejection
212	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,489	15,973	Rosarno	21,36	sand boils subsidence
213	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	39,339	16,145	San Fili	116,89	Ground cracks sand boils
214	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	39,307	16,049	San Lucido	112,55	Sand boils
215	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,286	15,9	San Procopio (La Conturella)	6,23	Water ejection
216	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,282	15,888	San Procopio	7,35	Ground cracks sand boils
217	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,292	15,903	San Procopio- Goletta	5,88	Unspecified
218	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,278	15,889	San Procopio (Bombardara)	7,38	Water ejection
219	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,324	15,888	Seminara- Sant'Anna di Seminara	7,76	Water ejection subsidence
220	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,256	15,97	Santa Cristina D'Aspromonte	4,56	Ground cracks sand boils
221	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,25	15,933	Scido- Santa Giorgia	6,15	Ground cracks sand boils
222	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,245	15,933	Scido	6,63	Ground cracks sand boils subsidence
223	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,333	16,016	Terranova Sappo Minulo- Scrofario	5,67	Sand boils
224	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M_{w}	11	38,336	15,871	Seminara- Sant'Anna di Seminara	9,67	Water ejection subsidence
225	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,283	15,933	Cosoleto-Sitizano	3,59	Unspecified
226	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	Mw	11	38,321	16,007	Terranova Sappio Minulo	4,19	Sand boils
227	Italy	1783.02.05	Southern Calabria	38,297	15,97	7,1	M _w	11	38,315	15,983	Varapodio	2,30	Sand boils

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

228	Italy	1783.02.07	Calabria	38,58	16,201	6,74	Mw	10_11		38,556	16,189	Acquaro	2,87		Ground cracks sand boils
229	Italy	1783.02.07	Calabria	38,58	16,201	6,74	Mw	10_11		38,119	15,653	Reggio Calabria	70,10		sand boils subsidence
230	Italy	1783.02.07	Calabria	38,58	16,201	6,74	Mw	10_11		38,598	16,23	Soriano Calabro	3,22		Water ejection
231	Italy	1783.02.07	Calabria	38,58	16,201	6,74	Mw	10_11		38,497	16,081	Laureana di Borrello	13,94		Sand boils
232	Italy	1783.02.07	Calabria	38,58	16,201	6,74	Mw	10_11		38,651	16,298	Vallelonga	11,55		Sand boils
233	Italy	1783.02.07	Calabria	38,58	16,201	6,74	Mw	10_11		38,565	16,196	Dasà	1,72		Ground cracks sand boils
234	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,833	16,516	Borgia	6,99		A1-2, A4-5
235	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,833	16,267	Acconia	17,89		Ground cracks sand boils
236	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,826	16,311	Acconia- Curinga	14,02		Ground cracks sand boils
237	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	M_{w}	11		38,833	16,25	Feroleto Antico- Fondaco del Fico	19,30		Water ejection
238	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,98	16,206	Gizzeria	31,14		Water ejection
239	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,849	16,377	Jacurso	10,37		Ground cracks sand boils
240	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,497	16,081	Laureana di Borrello	46,19		Sand boils
241	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,859	16,365	Maida	11,89		Ground cracks sand boils
242	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,75	16,514	Montauro	5,83		Sand boils
243	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,718	16,288	Monterosso Calabro	16,99		Ground cracks sand boils
244	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,833	16,583	Borgia- Pantano di Teremola	11,61		Ground cracks sand boils
245	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,75	16,317	Polia-Poliolo	13,33		Sand boils
246	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,817	16,598	Borgia-Roccelletta	12,15		Sand boils
247	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,933	16,25	Sant'Eufemia	24,79		Sand boils
248	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,846	16,345	San Pietro a Maida	12,34		Sand boils
249	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,781	16,518	Squillace	4,70		Water ejection
250	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,893	16,404	Maida- Vena di Maida	13,09		Ground cracks sand boils
251	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,675	16,101	Vibo Valentia	33,79		Water ejection
252	Italy	1783.03.28	Central Calabria	38,785	16,464	7,03	Mw	11		38,84	16,414	Cortale	7,50		Ground cracks sand boils
253	Hungary	1783.04.22	Komaron	47,668	18,036	5,35	Mw	5	11,5	47,752	18,138	Komaron	12,11	16,70	sand boils ground cracks
254	Hungary	1783.04.22	Komaron	47,668	18,036	5,35	Mw	5	11,5	47,747	18,491	Labatlan	35,17	37,00	sand boils ground cracks
255	Italy	1785.10.09	Monti Reatini	42,536	12,788	5,76	Mw	8_9		42,53	12,763	S.Nicolo'	2,15		A1, A4-5
256	Italy	1785.10.09	Monti Reatini	42,536	12,788	5,76	Mw	8_9		42,535	12,76	Terni- Piediluco	2,30		Ground cracks water ejection
257	Italy	1786.12.25	Rimini Area	43,991	12,565	5,66	M_{w}	8		44,059	12,569	Rimini	7,57		Unspecified
258	Italy	1789.09.30	Alta Val Tiberina	43,51	12,217	5,89	Mw	9		42,32	12,622	Selci	136,41		Ground cracks sand boils
259	Greece	1791.11.02	Zakynthos Isle	37,8	21	6,78	Mw	10				Zakynthos	10,00		B1
260	Italy	1802.05.12	Valle dell'Oglio	45,424	9,839	5,6	Mw	8		45,369	9,827	Ticengo	6,19		Ground crack
261	Italy	1802.05.12	Valle dell'Oglio	45,424	9,839	5,6	Mw	8		45,399	9,874	Soncino	3,90		Ground cracks
262	Romania	1802.10.26	Vrancea	45,700	26,600	7,9	Mw	10	150	44,440	26,120	Coltea_tower_(Bucharest)	145,13	208,72	sand boil ground cracks
263	Italy	1805.07.26	Molise	41,5	14,474	6,68	Mw	10		41,483	14,466	Boiano	2,00		Unspecified
264	Italy	1805.07.26	Molise	41,5	14,474	6,68	M_w	10		40,9	15,433	Calitri (Vallone dei monaci) [2]	104,38		Unspecified
265	Italy	1805.07.26	Molise	41,5	14,474	6,68	Mw	10		41,527	14,389	Cantalupo nel Sannio	7,69		Ground cracks water ejection
266	Italy	1805.07.26	Molise	41,5	14,474	6,68	Mw	10		41,646	14,643	Montagano	21,48		Ground cracks water ejection
267	Italy	1805.07.26	Molise	41,5	14,474	6,68	Mw	10		41,55	14,34	Bosso (Busso)	12,47		Ground cracks sand boils
268	Italy	1805.07.26	Molise	41,5	14,474	6,68	Mw	10		41,349	14,669	Morcone	23,38		Water ejection

Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

269	Spain	1806.10.27	Pinos Puerte- Granada	37,209	-3,717	5,16	Mw	7		37,22	-3,74		2,38		Unspecified
270	Hungary	1810.01.14	Mor	47,318	18,186	5,48	Mw	5	18	47,322	18,091	Bakonycsernye	7,19	19,38	sand boils ground cracks
271	Hungary	1810.01.14	Mor	47,318	18,186	5,48	Mw	5	18	47,361	18,111	Nagyveleg	7,43	19,47	sand boils ground cracks
272	Greece	1817.08.23	Aeghio	38,244	22,078	6,6	Mw	9		38,264	22,108	Cape Aliki	3,44		Subsidence mud volcanoes
273	Italy	1818.02.20	Catania Area	37,603	15,14	6,28	Mw	9_10		37,66	15,19	Pozzillo	7,72		B1
274	Italy	1818.02.20	Catania Area	37,603	15,14	6,28	Mw	9_10		37,35	15,07	Ramondetta	28,81		А
275	Italy	1818.02.20	Catania Area	37,603	15,14	6,28	Mw	9 10		37,4	15,08	Paraspolo (near R.Simeto)	23,19		A, B1, C2
276	Italy	1818.02.20	Catania Area	37,603	15,14	6,28	Mw	9 10		37,566	14,902	Paternò neighbour	21,38		A, C2
277	Greece	1820.02.21	Lefkas Isle	38,834	20,708	6,4	Mw	9				Lefkada Square	9,00		A3
278	Italy	1823.03.05	Northern Sicily	38,185	14,344	5,81	Mw	8		37,984	13,698	Termini Imerese	60,81		Sand boils
279	Italy	1823.03.05	Northern Sicily	38,185	14,344	5,81	Mw	8		37,496	14,1	Caltanissetta- Terra Pelata	79,58		Ground crack
280	Italy	1826.02.01	Potenza Area	40,52	15,726	5,74	Mw	8		40,582	15,674	Tito	8,18		Water ejection
281	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,11	-0,72	San Fulgencio	3,06		Unspecified
282	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,13	-0,77	Dolores	5,32		Unspecified
283	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,1	-0,73	Daya Vieja	1,65		Unspecified
284	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,1	-0,79	Calle Donadores	4,49		Unspecified
285	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,11	-0,85	Pasajes Las Carolinas	9,85		Unspecified
286	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,12	-0,87	Calossa	11,84		Unspecified
287	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,11	-0,91	Orihuela	14,99		Unspecified
288	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_w	10		38,08	-0,94	Orihuela	17,44		Unspecified
289	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_w	10		38,15	-0,96	Benferri	20,37		Unspecified
290	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_w	10		38,15	-0,9	Calle La Rambleta	15,53		Unspecified
291	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_w	10		38,17	-0,9	Camino Del Espartal	16,63		Unspecified
292	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_w	10		38,2	-0,84	Partida Atalayas Gp.	15,17		Unspecified
293	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_w	10		38,17	-0,81	Vìa Pista	10,94		Unspecified
294	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_w	10		38,24	-0,82	Vìa Pista	18,26		Unspecified
295	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,26	-0,7	Elche	19,46		Unspecified
296	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,08	-0,65	Guardamar	8,02		Unspecified
297	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,08	-0,72	Benijofar	2,04		Unspecified
298	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,07	-0,74	Lugar Diseminados	2,00		Unspecified
299	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,08	-0,82	Orihuela	6,97		Unspecified
300	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_{w}	10		38,07	-0,89	Correntias Bajas	13,20		Unspecified
301	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	Mw	10		38,07	-0,86	Diseminado Diseminados	10,61		Unspecified
302	Spain	1829.03.21	Torrevieja	38,088	-0,741	6,25	M_{w}	10		38,07	-0,9	Azarbeta de Las Vinas	14,06		Unspecified
303	Romania	1829.07.01	Pishkol't	47,548	22,261	5,36	Mw	7	13	47,534	22,379	Dengeleg (Erdengeleg)	9,03	15,83	sand boils ground cracks
304	Romania	1829.07.01	Pishkol't	47,548	22,261	5,36	Mw	7	13	47,514	22,335	Érendréd	6,75	14,65	sand boils ground cracks
305	Italy	1832.01.13	Valle Umbra	42,98	12,605	6,43	Mw	10		42,939	12,668	Corvia	6,86		A4-5
306	Italy	1832.01.13	Valle Umbra	42,98	12,605	6,43	Mw	10		42,933	12,633	Cantagalli	5,70		A1, A4, D
307	Italy	1832.01.13	Valle Umbra	42,98	12,605	6,43	Mw	10		42,95	12,63	Foligno- Budino	3,91		Ground cracks sand boils
308	Italy	1832.01.13	Valle Umbra	42,98	12,605	6,43	Mw	10		42,955	12,704	Foligno	8,52		Water ejection
309	Italy	1832.01.13	Valle Umbra	42,98	12,605	6,43	M_w	10		44,028	11,107	Luicciana-Cantagallo	167,90		Sand boils
310	Italy	1832.03.08	Crotone Area	39,079	16,919	6,65	Mw	10		38,961	16,803	Crocchio River (Giardino di C.)	16,51		A1, A3
311	Italy	1832.03.08	Crotone Area	39,079	16,919	6,65	M_{w}	10		38,983	16,917	Cutro- Fiume Targine	10,68		Ground cracks water sand ejection
312	Italy	1832.03.08	Crotone Area	39,079	16,919	6,65	Mw	10		38,942	16,921	Cutro- Piana di Steccato	15,24		Ground cracks water sand ejection

LIQUEFACT

LIQUEFACT

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

313	Italy	1832.03.08	Crotone Area	39,079	16,919	6,65	Mw	10		38,968	16,783	Cropani	17,04		Ground cracks sand boils
314	Italy	1832.03.08	Crotone Area	39,079	16,919	6,65	Mw	10		39,033	16,982	Cutro	7,47		Sand boils
315	Italy	1832.03.13	Reggio Emilia Area	44,765	10,494	5,51	Mw	78		44,8	10,33	San Leonardo (Parma)	13,52		Ground cracks
316	Romania	1834.10.15	Ermellk	47,531	22,308	5,96	Mw	9	21	47,583	22,286	Piskolt (Piscolt)	6,02	21,85	sand boils ground cracks
317	Romania	1834.10.15	Ermellk	47,531	22,308	5,96	Mw	9	21	47,550	22,844	Béltek (Beltiug)	40,32	45,46	sand boils ground cracks
318	Romania	1834.10.15	Ermellk	47,531	22,308	5,96	Mw	9	21	47,514	22,335	Érendréd	2,81	21,19	sand boils ground cracks
319	Romania	1834.10.15	Ermellk	47,531	22,308	5,96	Mw	9	21	47,536	22,377	Érdengeleg	5,22	21,64	sand boils ground cracks
320	Italy	1836.04.25	Northern Calabria	39,567	16,737	6,18	Mw	9		39,574	16,635	Rossano	8,78		Ground cracks
321	Italy	1836.04.25	Northern Calabria	39,567	16,737	6,18	Mw	9		39,617	16,633	Rossano-S. Angelo	10,51		Sand boils
322	Greece	1837.03.20	Poros Isle	37,421	23,326	5,99	Mw	7		37,501	23,454	Poros port	14,38		Ground cracks
323	Romania	1838.01.23	Vrancea	45,700	26,600	7,5	Mw	9	150	44,970	24,240	Babeni	201,59	251,27	sand boils ground cracks
324	Romania	1838.01.23	Vrancea	45,700	26,600	7,5	Mw	9	150	44,480	26,430	Belciugatu	136,35	202,71	sand boils ground cracks
325	Romania	1838.01.23	Vrancea	45,700	26,600	7,5	Mw	9	150	45,500	27,500	Bolboaca	73,49	167,03	sand boils ground cracks
326	Romania	1838.01.23	Vrancea	45,700	26,600	7,5	Mw	9	150	45,280	24,670	Corbeni	157,57	217,55	sand boils ground cracks
327	Romania	1838.01.23	Vrancea	45,700	26,600	7,5	Mw	9	150	44,890	26,700	Corbu	90,43	175,15	sand boils ground cracks
328	Romania	1838.01.23	Vrancea	45,700	26,600	7,5	Mw	9	150	45,700	27,150	Focsani	42,73	155,97	sand boils ground cracks
329	Romania	1838.01.23	Vrancea	45,700	26,600	7,5	Mw	9	150	45,020	25,170	Malurile	134,94	201,77	sand boils ground cracks
330	Romania	1838.01.23	Vrancea	45,700	26,600	7,5	Mw	9	150	45,390	27,150	Lamotesti	54,99	159,76	sand boils ground cracks
331	Greece	1846.06.10	Messinia	37,15	22	6,78	Mw	10				Pamisos r. Estuary	13,50		A1
332	Greece	1846.06.10	Messinia	37,15	22	6,78	Mw	10				Pamisos r. Estuary	13,50		A2
333	Greece	1846.06.10	Messinia	37,15	22	6,78	Mw	10				Mikromani	8,00		A2
334	Italy	1846.08.14	Colline Pisane	43,47	10,562	6,04	Mw	9		43,536	10,535	Lorenzana	7,66		Sand boils
335	Italy	1846.08.14	Colline Pisane	43,47	10,562	6,04	Mw	9		43,55	10,505	Fauglia (Podere Acciaroli)	10,02		Sand boils
336	Italy	1846.08.14	Colline Pisane	43,47	10,562	6,04	M_{w}	9		43,548	10,493	Fauglia (Podere Fondo della Grotta)	10,31		Water ejection
337	Italy	1846.08.14	Colline Pisane	43,47	10,562	6,04	Mw	9		43,547	10,515	Fauglia (Podere delle Querce)	9,37		Water ejection sand boils
338	Italy	1846.08.14	Colline Pisane	43,47	10,562	6,04	Mw	9		43,48	10,55	Lorenzana- Podere SS. Marie	1,47		Ground cracks sand boils
339	Italy	1846.08.14	Colline Pisane	43,47	10,562	6,04	Mw	9		43,6	10,35	Livorno- Podere Stagno	22,39		Ground cracks sand boils
340	Italy	1848.01.11	Catania Gulf	37,428	15,25	5,51	Mw	78		37,231	15,221	Augusta	22,06		A,B1
341	Turkey	1850.04.19	Apolyon Lake	40,098	28,778	6,7	Mw	8				Kermaste	11,00		A1
342	Greece	1853.08.18	Theba	38,319	23,317	6,71	Mw	9 10		38,653	22,996	Atalanti	46,49		Liquefaction
343	Italy	1854.02.12	Cosenza Area	39,256	16,259	6,34	Mw	10		39,344	16,165	Cocchiano (C. da Miceli)	12,70		A1, A4
344	Italy	1854.02.12	Cosenza Area	39,256	16,259	6,34	Mw	10		39,276	16,175	Cerisano	7,57		Cracks gas water ejection
345	Italy	1854.02.12	Cosenza Area	39,256	16,259	6,34	M_{w}	10		39,367	16,167	San Vincenzo la Costa- Valle del Drago	14,67		water sand ejection
346	Italy	1854.02.12	Cosenza Area	39,256	16,259	6,34	Mw	10		39,332	16,182	Rende	10,74		Ground cracks water sand ejection
347	Italy	1854.02.12	Cosenza Area	39,256	16,259	6,34	Mw	10		39,339	16,145	San Fili	13,47		Ground cracks
348	Turkey	1855.02.28	Bursa	40,183	29,067	7,02	Mw	9_10		40,034	28,400	Kirmasti	59,11		Unspecified
349	Italy	1855.07.25	Vallese, Stalden-Visp	46,23	7,85	6,2	Mw	8		46,31	7,99	Brig (CH)	13,97		Landslide
350	Italy	1857.12.16	Basilicata	40,352	15,842	7,12	Mw	11		40,45	15,516	Atena (riverbanks)	29,69		A1
351	Italy	1857.12.16	Basilicata	40,352	15,842	7,12	Mw	11		40,284	15,9	Saponara (Agri river banks)	9,02		В
352	Italy	1857.12.16	Basilicata	40,352	15,842	7,12	Mw	11		40,376	15,824	Marsico- Vetere	3,07		Ground cracks
353	Italy	1857.12.16	Basilicata	40,352	15,842	7,12	Mw	11		40,339	15,899	Viggiano	5,04		Water ejection
354	Greece	1858.02.21	Korinthos	37,870	22,880	6,5	Mw	9		37,92	23,030	Kalamaki	14,29		Ground cracks

$\langle \rangle$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748 Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

355	Portugal	1858.11.11	Epicenter Offshore	38,2	-9	6,8	Mw	8	38,52	-8,89	Setubal	36,86	Unspecified
356	Turkey	1859.08.21	Imvros Isle	40,183	25,861	6,75	Mw	9	40,112	25,778	Kastro	10,59	Unspecified
357	Greece	1861.12.26	Aeghio	38,222	22,139	6,85	Mw	10	38,431	22,424	Itea	34,04	ground cracks liquefaction
358	Greece	1861.12.26	Aeghio	38,222	22,139	6,85	Mw	10	38,428	22,443	Kira	35,05	ground cracks liquefaction
359	Greece	1861.12.26	Aeghio	38,222	22,139	6,85	Mw	10	37,92	23,030	Kalamaki	84,94	Ground cracks mud volcanoes
360	Greece	1867.02.04	Cephalonia Isle	38,233	20,424	7,15	Mw	10			Lyxouri	22,00	A1
361	Greece	1867.02.04	Cephalonia Isle	38,233	20,424	7,15	Mw	10			Delaportata	22,00	A1
362	Greece	1867.02.04	Cephalonia Isle	38,233	20,424	7,15	Mw	10			Ag. Dimitrios	23,00	A2
363	Greece	1867.02.04	Cephalonia Isle	38,233	20,424	7,15	Mw	10			Koubalata	23,00	A2
364	Greece	1867.02.04	Cephalonia Isle	38,233	20,424	7,15	Mw	10			Argostoli	22,00	В3
365	Greece	1867.03.07	Lesvos Isle	39,25	26,2	6,85	Mw	10			Kalloni	5,00	A1
366	Greece	1867.03.07	Lesvos Isle	39,25	26,2	6,85	Mw	10			Perama	34,00	В3
367	Greece	1867.03.07	Lesvos Isle	39,25	26,2	6,85	Mw	10			Mitilini	33,00	В3
368	Greece	1870.08.01	Arahova	38,48	22,55	6,8	Mw	9			Katavothra	13,00	A1
369	Greece	1870.08.01	Arahova	38,48	22,55	6,8	Mw	9			Skliri	10,00	A2
370	Greece	1870.08.01	Arahova	38,48	22,55	6,8	Mw	9			Larnaki	12,00	A2
371	Greece	1870.08.01	Arahova	38,48	22,55	6,8	Mw	9			Kira	10,00	A2
372	Greece	1870.08.01	Arahova	38,48	22,55	6,8	Mw	9			Itea	5,00	B3
373	Greece	1870.08.01	Arahova	38,48	22,55	6,8	Mw	9			Desfina	7,81	С
374	Greece	1870.08.01	Arahova	38,48	22,55	6,8	Mw	9			Thermopylae	35,50	С
375	Greece	1870.08.01	Arahova	38,480	22,550	6,8	Mw	9	38,432	22,423	Itea	12,28	Liquefaction
376	Greece	1870.08.01	Arahova	38,480	22,550	6,8	Mw	9	38,379	22,381	Galazidi	18,52	Liquefaction
377	Greece	1870.08.01	Arahova	38,480	22,550	6,8	Mw	9	38,527	22,378	Amfisa	15,86	Liquefaction
378	Italy	1870.10.04	Cosenza Area	39,22	16,331	6,24	M_{w}	9_10	39,206	16,611	San Giovanni in Fiore- Tore del Ponte	24,18	water sand ejection
379	Italy	1870.10.04	Cosenza Area	39,22	16,331	6,24	M_{w}	9_10	39,367	16,167	San Vincenzo la Costa-Valle del Drago	21,60	water sand ejection
380	Italy	1870.10.04	Cosenza Area	39,22	16,331	6,24	M_{w}	9_10	39,661	16,023	San Sosti	55,73	Sand boils
381	Greece	1870.10.25	Arahova	38,48	22,45			8			Larnaki	4,00	A2
382	Greece	1870.10.25	Arahova	38,48	22,45			8			Itea	5,00	A2
383	Italy	1873.06.29	Alpago Cansiglio	46,159	12,383	6,29	Mw	9_10	46,141	12,333	Paludi del Lago S. Croce	4,34	A2
384	Italy	1873.06.29	Alpago Cansiglio	46,159	12,383	6,29	Mw	9_10	46,142	12,333	Farra d'Alpago	4,29	Water ejection
385	Italy	1875.03.17	Costa Romagnola	44,209	12,659	5,74	Mw	8	44,262	12,35	Cervia	25,32	Ground changes
386	Italy	1875.03.17	Costa Romagnola	44,209	12,659	5,74	Mw	8	44,197	12,405	Cesenatico	20,30	Ground cracks
387	Italy	1875.12.06	Gargano	41,689	15,677	5,86	Mw	8	41,604	15,9	Manfredonia	20,81	Water ejection
388	Turkey	1878.04.19	Izmit	40,375	30,106	6,25	Mw	7_8	40,76	29,908	Izmit	45,97	Unspecified
389	Croatia	1880.11.09	Zagreb	45,910	16,110	5,99	Mw	9	45,769	16,128	Drenje	15,77	sand boils
390	Croatia	1880.11.09	Zagreb	45,910	16,110	5,99	Mw	9	45,770	16,165	Trstenik	16,17	sand boils
391	Croatia	1880.11.09	Zagreb	45,910	16,110	5,99	Mw	9	45,795	16,122	Ivanja_reka	12,79	sand boils
392	Croatia	1880.11.09	Zagreb	45,910	16,110	5,99	M_w	9	45,796	16,103	Resnik	12,67	sand boils
393	Croatia	1880.11.09	Zagreb	45,910	16,110	5,99	Mw	9	45,783	15,928	Jarun	19,95	sand boils
394	Croatia	1880.11.09	Zagreb	45,910	16,110	5,99	Mw	9	45,777	15,839	Stupnik	25,72	sand boils
395	Greece	1881.04.03	Hios Isle	38,2	26,2	6,47	Mw	10			Hios	26,00	A1, A3
396	Spain	1884.12.25	Arenas Del Rey	36,957	-3,971	6,3	M.,	9 10	37,43	-5,4	Cortijo De Los Alamos	137,11	Unspecified

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

397	Spain	1884.12.25	Arenas Del Rey	36,957	-3,971	6,3	M _w	9_10	37,06	-3,97	Santa Cruz del Comercio	11,46	Unspecified
398	Spain	1884.12.25	Arenas Del Rey	36,957	-3,971	6,3	M_w	9_10	37,58	-5,93	Llano de Las Donas (Mudapelo)	186,73	Unspecified
399	Spain	1884.12.25	Arenas Del Rey	36,957	-3,971	6,3	M_{w}	9_10	36,92	-3,63	Pago de Las Ventas (Albunuelas)	30,59	Unspecified
400	Spain	1884.12.25	Arenas Del Rey	36,957	-3,971	6,3	M_{w}	9_10	36,87	-4,08	Rio Bermuza (Canillas de Aceituno)	13,70	Unspecified
401	Spain	1884.12.25	Arenas Del Rey	36,957	-3,971	6,3	Mw	9_10	36,77	-4,09	S.O. de Velez Malaga	23,34	Unspecified
402	Greece	1886.08.27	Filiatra	36,988	24,467	7,16	Mw	10			Marathoupoli	9,00	A1
403	France	1887.02.23	Western Liguria	43,891	7,992	6,27	M_{w}	9	43,77	7,494	Nice	42,16	Soil liquefaction
404	France	1887.02.23	Western Liguria	43,891	7,992	6,27	Mw	9	43,774	7,498	Menton	41,72	Soil liquefaction
405	Italy	1887.02.23	Western Liguria	43,891	7,992	6,27	M_{w}	9	44,049	8,213	Albenga	24,94	water sand ejection
406	Italy	1887.02.23	Western Liguria	43,891	7,992	6,27	M_{w}	9	44,149	8,283	Pietra Ligure	36,95	Sand boils
407	Italy	1887.02.23	Western Liguria	43,891	7,992	6,27	Mw	9	44,092	8,229	Ceriale	29,32	Ground cracks sand boils
408	Italy	1887.02.23	Western Liguria	43,891	7,992	6,27	M_{w}	9	44,272	8,436	Vado Centro- Vado Ligure	55,27	Ground cracks sand boils
409	Greece	1888.09.09	Aeghio	38,238	22,079	6,29	M_{w}	8_9	38,234	22,137	Valimitika	5,09	Cracks liquefaction
410	Greece	1888.09.09	Aeghio	38,238	22,079	6,29	Mw	8_9	38,282	22,027	Selianitika	6,68	Cracks liquefaction
411	Italy	1889.10.13	Carnia	46,398	13,019	4,4	Mw	6	46,408	13,005	But river	1,55	A1
412	Serbia	1893.04.08	Central Serbia	44,300	21,300	6,42	Mw	9	44,182	21,149	Crkvenac	17,83	Sand_boil
413	Italy	1893.04.22	Monti Nebrodi	38,001	15,028	4,83	Mw	6_7	38,02	15,01	Montalbano	2,64	B1
414	Greece	1893.05.23	Theba	38,310	23,250	6,2	M_{w}	8	38,433	23,127	Mulki	17,38	ground cracks
415	Italy	1893.08.10	Gargano	41,713	16,075	5,39	Mw	8	41,7	16,05	Monte Saraceno	2,53	A1
416	Italy	1894.03.25	Gargano	41,866	15,323	4,9	Mw	6_7	41,9	15,35	Punta delle Pietre Nere	4,39	A1
417	Greece	1894.04.20	Martino	38,600	23,209	6,77	Mw	10			Skala Atalantis	10,00	B3
418	Greece	1894.04.20	Martino	38,600	23,209	6,77	Mw	10	38,639	23,104	Kiparisi	10,10	liquefaction
419	Greece	1894.04.20	Martino	38,600	23,209	6,77	Mw	10	38,714	23,060	Livantes	18,12	liquefaction
420	Greece	1894.04.27	Ag. Konstantinos	38,716	22,959	6,91	Mw	10	38,721	23,060	Livantes	8,78	subsidence
421	Greece	1894.04.27	Ag. Konstantinos	38,716	22,959	6,91	Mw	10	38,631	23,125	Almyra	17,24	subsidence
422	Greece	1894.04.27	Ag. Konstantinos	38,716	22,959	6,91	Mw	10	38,499	22,973	Orhomenos	24,17	Unspecified
423	Turkey	1894.07.10	Izmit	40,750	29,550	6,7	Mw	10	40,91	29,054	Proti	45,38	ground cracks
424	Turkey	1894.07.10	Izmit	40,750	29,550	6,7	Mw	10	40,871	29,258	Pendik	28,02	ground cracks
425	Turkey	1894.07.10	Izmit	40,750	29,550	6,7	Mw	10	40,629	29,007	Karakoy	47,73	ground cracks
426	Turkey	1894.07.10	Izmit	40,750	29,550	6,7	Mw	10	40,614	28,964	Katirli	51,69	ground cracks
427	Turkey	1894.07.10	Izmit	40,750	29,550	6,7	Mw	10	40,882	29,064	Antigoni	43,46	ground cracks & lateral spreading
428	Turkey	1894.07.10	Izmit	40,750	29,550	6,7	Mw	10	40,423	29,161	gemlik	49,02	ground cracks & lateral spreading
429	Turkey	1894.07.10	Izmit	40,750	29,550	6,7	Mw	10	40,684	29,494	Hersek	8,73	liquefaction
430	Turkey	1894.07.10	Izmit	40,750	29,550	6,7	Mw	10	41,067	29,042	Arnautkoy	55,38	subsidence
431	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	Mw	9	38,146	15,215	Barcellona Pozzo di Gotto	59,38	B1
432	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	Mw	9	38,252	15,608	Ganzirri	23,23	B1
433	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	Mw	9	38,248	15,601	Ganzirri	23,91	C1, C2
434	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	Mw	9	38,083	15,65	Reggio Calabria (Acciarello)	29,83	В
435	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	Mw	9	38,248	15,603	Ganzirri	23,74	B2
436	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	Mw	9	38,266	15,646	Torre Faro	19,71	B2
437	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	Mw	9	38,187	15,529	Messina Forms	31,84	B2, B3

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

438	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	M_w	9		38,274	15,928	Cosoleto	5,30		Ground cracks sand boils
439	Italy	1894.11.16	Southern Calabria	38,288	15,87	6,12	Mw	9		38,258	15,615	Messina- Ganzirri	22,52		Ground cracks sand boils
440	Italy	1898.03.04	Parma Area	44,655	10,26	5,37	M_w	7_8		44,633	10,234	Lesignano De' Bagni-Rivalta	3,20		Unspecified
441	Greece	1898.06.02	Argos	37,6	22,5	7	Mw	7	80			Inahos	24,00	83,52	С
442	Italy	1898.11.02	Calatino	37,259	14,546	4,51	M_w	5_6		37,21	14,4	Contrada Racineri	14,03		А
443	Greece	1899.01.22	Kupparissia	37,200	21,600	6,5	Mw	9	10	37,235	21,636	River bank	5,03	11,19	liquefaction subsidence
444	Greece	1899.01.22	Kupparissia	37,200	21,600	6,5	M_w	9	10	37,212	21,598	Spilia	1,35	10,09	liquefaction subsidence
445	Turkey	1899.09.20	Aydin	37,82	28,25	6,67	Mw	9				Kocarli	45,30		С
446	Turkey	1899.09.20	Aydin	37,82	28,25	6,67	M_w	9				Sahinli	75,30		С
447	Turkey	1899.09.20	Aydin	37,82	28,25	6,67	Mw	9				Cellat	81,00		С
448	Italy	1901.03.29	Val di Susa	45,178	7,101	4,28	M_{w}	5		42,83	11,78	San Casciano dei Bagni-Ponte a Rigo	456,31		Unspecified
449	Italy	1901.04.24	Montelibretti	42,1	12,736	5,25	Mw	8		42,066	12,767	Palombara Sabina	4,57		Gas emission
450	Italy	1901.10.30	Garda Occidentale	45,548	10,49	5,44	M_{w}	7_8		45,6	10,516	Salo`	6,13		A1, B
451	Italy	1902.03.05	Garfagnana	44,093	10,463	4,98	Mw	7		44,132	10,41	Pieve Fosciana	6,06		Ground cracks
452	Greece	1902.07.05	Assiros	40,82	23,04	6,4	Mw	9	11			Assiros	3,00	11,40	A1
453	Greece	1902.07.05	Assiros	40,82	23,04	6,4	Mw	9	11			Lagadas	10,00	14,87	A2
454	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	M_{w}	10	15	41,881	23,111	Kresna	35,23	38,29	lateral spreading
455	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	M_{w}	10	15	41,890	22,813	Kresna	13,71	20,32	lateral spreading and failure of river bank
456	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	42,062	23,034	Kresna	40,16	42,87	Sand boil
457	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	42,145	23,019	Kresna	46,57	48,93	Sand boil e water ejection
458	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,887	22,457	Kresna	22,34	26,91	Sand boil e water ejection
459	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,869	22,435	Kresna	23,26	27,68	Sand boil e water ejection
460	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,986	23,076	Kresna	37,34	40,24	ground cracks and water ejection
461	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,404	22,883	Kresna	46,59	48,94	Unspecified
462	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,386	22,824	Kresna	47,15	49,47	Unspecified
463	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,439	22,797	Kresna	41,01	43,67	Unspecified
464	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,490	22,700	Kresna	34,48	37,60	Unspecified
465	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,189	22,500	Kresna	69,97	71,56	Unspecified
466	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,409	22,226	Kresna	58,70	60,58	Unspecified
467	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,488	22,120	Kresna	59,40	61,26	Unspecified
468	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	41,599	21,970	Kresna	64,61	66,33	Unspecified
469	Bulgaria	1904.04.04	Kresna	41,800	22,700	6,9	Mw	10	15	42,146	21,709	Kresna	90,52	91,75	Unspecified
470	Albania	1905.06.01	Shkodra	42,000	19,500	6,6	Mw	9	11	41,998	19,562	Kosmac	5,13	12,14	river bank failure
471	Albania	1905.06.01	Shkodra	42,000	19,500	6,6	Mw	9	11	42,038	19,495	Bahacallek	4,25	11,79	Unspecified
472	Albania	1905.06.01	Shkodra	42,000	19,500	6,6	Mw	9	11	42,062	19,500	Shkodra	6,90	12,98	Unspecified
473	Albania	1905.06.01	Shkodra	42,000	19,500	6,6	Mw	9	11			Buna River	6,70	12,88	Unspecified
474	Albania	1905.06.01	Shkodra	42,000	19,500	6,6	Mw	9	11			Bardullush	14,40	18,12	Unspecified
475	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	M_{w}	10_11		38,709	16,103	Bivona [2]	62,25		A1, A4
476	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		39,131	16,081	Amantea	83,46		Sand boils
477	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	M_{w}	10_11		38,792	16,447	Amaroni	93,36		Ground cracks sand boils
478	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		39,518	15,938	Cetraro	112,18		Liquefaction
479	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,826	16,311	Acconia- Curinga	82,96		Ground cracks sand boils

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

480	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	M_{w}	10_11		38,962	16,388	Feroleto Antico	94,66		Ground cracks water sand ejection
481	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,707	16,191	Maierato	69,73		Ground cracks sand boils
482	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,927	16,494	Marcellinara	101,61		Ground cracks lateral spreading
483	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,554	15,938	Nicotera	47,06		Water ejection
484	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	M_{w}	10_11		39,405	16,159	Montalto Uffugo	111,00		Sand boils
485	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	M_{w}	10_11		39,367	16,167	San Vincenzo la Costa- Valle del Drago	108,05		Sand boils
486	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,489	15,973	Rosarno	51,35		Ground cracks sand boils
487	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,967	16,273	Sambiase	86,00		Water ejection
488	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		39,167	16,149	Lago	90,46		Water ejection
489	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	M_w	10_11		38,324	15,888	Seminara- Sant'Anna di Seminara	52,43		Landslide
490	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	M_{w}	10_11		39,044	16,149	Nocera Terinese- S. Sisti (S. Sisto dei Valdesi)	81,56		Ground cracks
491	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		39,082	16,244	Martinaro	90,67		Ground cracks water ejection
492	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,511	15,961	Candinoni-Sovareto	49,79		Water ejection
493	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,678	15,898	Tropea	44,13		Ground cracks sand boils
494	Italy	1905.09.08	Central Calabria	38,6	15,4	6,95	Mw	10_11		38,651	16,298	Vallelonga	78,24		Sand boils
495	Italy	1908.12.28	Messina Strait	38,146	15,687	7,1	Mw	11		38,266	15,646	Torre Faro	13,82		B1, B2, B3, C2
496	Italy	1908.12.28	Messina Strait	38,146	15,687	7,1	M_{w}	11		38,248	15,601	Ganzirri	13,61		C1
497	Italy	1908.12.28	Messina Strait	38,146	15,687	7,1	Mw	11		38,253	15,609	Ganzirri	13,72		C2, B2
498	Italy	1908.12.28	Messina Strait	38,146	15,687	7,1	Mw	11		38,248	15,613	Ganzirri	13,06		А
499	Italy	1908.12.28	Messina Strait	38,146	15,687	7,1	Mw	11		38,187	15,549	Messina	12,90		B1, B2, A
500	Italy	1908.12.28	Messina Strait	38,146	15,687	7,1	Mw	11		38,119	15,653	Reggio Calabria	4,23		Ground cracks sand boils subsidence
501	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		39,02	-8,79	Salvaterra	2,39		Unspecified
502	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		38,76	-9,23	S. Bras	45,81		Unspecified
503	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		38,71	-9,12	Santo Estevao	42,53		Unspecified
504	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		38,92	-8,88	Samora	11,27		Unspecified
505	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		38,99	-8,96	Castanheira	13,88		Unspecified
506	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		39,02	-8,96	Carregado	14,01		Unspecified
507	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		38,951	-8,98	Benavente	16,49		Unspecified
508	Portugal	1909.04.23	Benavente	39	-8,8	6	M_{w}	10		38,95	-8,98	Cabo Ruivo (junto a Vila Franca de Xira)	16,53		Unspecified
509	Portugal	1909.04.23	Benavente	39	-8,8	6	M_{w}	10		38,93	-9,25	Moio de Port'Alvo (junto da Malveira)	39,69		Unspecified
510	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		39,06	-8,86	Azambuja	8,45		Unspecified
511	Portugal	1909.04.23	Benavente	39	-8,8	6	M_{w}	10		39,07	-8,78	Reguengo	7,98		Unspecified
512	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		39,23	-8,68	Santarem	27,60		Unspecified
513	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		38,91	-8,88	Porto Alto	12,17		Unspecified
514	Portugal	1909.04.23	Benavente	39	-8,8	6	M_w	10		38,78	-9,15	Torrinha	38,95		Unspecified
515	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		38,91	-8,6	Biscainho	19,99		Unspecified
516	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		39,08	-8,76	Valada	9,55		Unspecified
517	Portugal	1909.04.23	Benavente	39	-8,8	6	Mw	10		38,919	-9	Alhandra	19,50		Unspecified
518	Greece	1909.05.30	Fokida	38,250	22,200	6	M_{w}	8	20	38,299	22,021	Kamara	16,55	25,96	liquefaction

LIQUEFACT

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

519	Greece	1909.05.30	Fokida	38,250	22,200	6	Mw	8	20	38,366	22,126	Spiridon	14,43	24,66	liquefaction
520	Italy	1909.08.25	Crete Senesi	43,15	11,403	5,35	Mw	7_8		43,15	11,283	Macereto	9,74		c
521	Croatia	1909.10.08	Kupa Valley	45,470	16,060	5,8	Mw	8	12,6	45,417	16,157	Glinska_Poljana	9,59	15,84	ground cracks water ejection
522	Croatia	1909.10.08	Kupa Valley	45,470	16,060	5,8	Mw	8	12,6	45,399	16,094	Mala_solina	8,33	15,11	ground cracks water ejection
523	Croatia	1909.10.08	Kupa Valley	45,470	16,060	5,8	Mw	8	12,6	45,386	16,146	Marinbrod	11,50	17,06	ground cracks water ejection
524	Croatia	1909.10.08	Kupa Valley	45,470	16,060	5,8	Mw	8	12,6	45,484	16,205	Nebojan	11,42	17,00	ground cracks water ejection
525	Croatia	1909.10.08	Kupa Valley	45,470	16,060	5,8	Mw	8	12,6	45,462	16,117	Vratecko	4,53	13,39	ground cracks water ejection
526	Croatia	1909.10.08	Kupa Valley	45,470	16,060	5,8	Mw	8	12,6	45,452	16,263	Brest_Pokupski	15,96	20,34	a well up to half filled with sand
527	Hungary	1911.07.08	Kecskemet	46,900	19,680	5,6	Mw	8	12	46,928	19,641	Baranyi_farm	4,30	12,75	sand boil
528	Greece	1912.01.24	Cephalonia Isle	38,1	20,5	6,1	M_{w}	10	11			Zakynthos	49,00	50,22	B2, B3
529	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	Mw	10	10	40,108	28,665	Apolyon Lake	140,47	140,82	Unspecified
530	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	Mw	10	10	40,132	28,492	Apolyon Lake	126,34	126,73	Unspecified
531	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	Mw	10	10	40,405	26,644	Gallipoli	57,31	58,18	Unspecified
532	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	Mw	10	10	40,592	26,843	Kavakkoy	32,43	33,94	Unspecified
533	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	M_{w}	10	10	40,634	26,825	Kocacesme	32,48	33,98	Unspecified
534	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	Mw	10	10	40,629	26,499	Mecidiye	59 <i>,</i> 67	60,50	Unspecified
535	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	M_{w}	10	10	40,736	26,051	Enez	96,94	97,46	Unspecified
536	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	Mw	10	10	41,341	28,548	Terkos lake	133,71	134,08	Unspecified
537	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	M_{w}	10	10	41,266	28,687	Uzunkopru	139,83	140,18	Unspecified
538	Turkey	1912.08.12	Murefte	40,7	27,2	7,4	Mw	10	10	40,666	27,245	Murefte	5,36	11,34	Unspecified
539	Greece	1914.11.27	Lefkas Isle	38,65	20,62	5,9	Mw	9	6			Kalamitisi	11,00	12,53	A3
540	Greece	1914.11.27	Lefkas Isle	38,65	20,62	5,9	Mw	9	6			Ag. Nikitas	14,00	15,23	A2
541	Greece	1914.11.27	Lefkas Isle	38,65	20,62	5,9	M_w	9	6			Nydri	11,00	12,53	B3
542	Greece	1914.11.27	Lefkas Isle	38,65	20,62	5,9	Mw	9	6			Lefkada	10,00	11,66	B3, B3
543	Italy	1915.01.13	Marsica	42,014	13,53	6,99	Mw	11	5	42,033	13,516	Fucino Strada 12 [2]	2,41	5,55	C
544	Italy	1915.01.13	Marsica	42,014	13,53	6,99	Mw	11	5	42,322	12,986	Concerviano	56,43	56,65	Ground cracks sand boils
545	Italy	1915.01.13	Marsica	42,014	13,53	6,99	Mw	11	5	42,05	13,483	Avezzano- Fucino strada 11	5,58	7,49	Ground cracks
546	Italy	1915.01.13	Marsica	42,014	13,53	6,99	M _w	11	5	41,983	13,633	Pescina-Fucino strada 24	9,19	10,46	water sand ejection
547	Italy	1915.01.13	Marsica	42,014	13,53	6,99	Mw	11	5	42,025	13,657	Pescina	10,57	11,69	water sand ejection
548	Italy	1915.01.13	Marsica	42,014	13,53	6,99	M _w	11	5	42,016	13,65	Pescina	9,92	11,11	Ground cracks
549	Italy	1915.01.13	Marsica	42,014	13,53	6,99	M _w	11	5	42,006	13,624	San Benedetto dei Marsi	7,82	9,28	Water ejection lateral spreading
550	Italy	1915.01.13	Marsica	42,014	13,53	6,99	M_{w}	11	5	41,99	13,637	Pescocostanzo-Molino di Venere	9,24	10,50	water sand ejection
551	Italy	1915.01.13	Marsica	42,014	13,53	6,99	M_w	11	5	41,994	13,551	Roccaraso- Bacinetto canale	2,82	5,74	water sand ejection
552	Italy	1915.01.13	Marsica	42,014	13,53	6,99	M_w	11	5	42,01	13,513	Celano-Fosso 13	1,47	5,21	water sand ejection
553	Italy	1915.01.13	Marsica	42,014	13,53	6,99	M_w	11	5	41,97	13,61	Ortucchio-Piana da Trasacco	8,23	9,63	water sand ejection
554	Italy	1915.01.13	Marsica	42,014	13,53	6,99	M_w	11	5	41,718	13,615	Sora	33,67	34,04	sand boils
555	Greece	1915.08.07	Ithaki Isle	38,5	20,5	6,3	M_w	9	12			Sami	18,00	21,63	A3
556	Italy	1916.05.17	Rimini Area	44,119	12,748	5,82	M_w	8		44,05	12,566	Rimini	16,44		A1
557	Italy	1916.08.16	Rimini Area	44,019	12,737	6,14	M_w	8		43,964	12,742	Cattolica	6,13		Ground cracks
558	Italy	1916.08.16	Rimini Area	44,019	12,737	6,14	M _w	8		43,983	12,667	Riccione- Ghetto delle Fontanelle	6,88		water sand ejection
559	Italy	1916.08.16	Rimini Area	44,019	12,737	6,14	Mw	8		43,904	12,905	Pesaro	18,56		Ground cracks
560	Italy	1916.08.16	Rimini Area	44,019	12,737	6,14	M_{w}	8		44,001	12,659	Riccione	6,55		Ground cracks water sand ejection

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

561	Italy	1916.08.16	Rimini Area	44,019	12,737	6,14	Mw	8		44,059	12,569	Rimini	14,15		Liquefaction ground changes
562	Italy	1917.04.26	Alta Val Tiberina	43,467	12,129	5,74	Mw	9_10		43,498	12,116	Citerna	3,60		Ground cracks water sand ejection
563	Italy	1917.04.26	Alta Val Tiberina	43,467	12,129	5,74	M_{w}	9_10		43,483	12,097	Monterchi- fiumi Cerfone e Sovara	3,14		Ground cracks water sand ejection
564	Italy	1919.06.29	Mugello	43,957	11,482	6,26	M_{w}	10		43,94	11,44	Vecchio-Piano di Cistio- F. Sieve	3,86		Water ejections
565	Italy	1919.06.29	Mugello	43,957	11,482	6,26	M_{w}	10		43,94	11,41	Borgo San Lorenzo- Piano di Ribatta- F. Sieve	6,07		Ground cracks
566	Spain	1919.09.10	Jacarilla/ Torremendo	38,08	-0,83	5,3	M_{w}	8		38,06	-0,86	Jacarilla	3,44		Unspecified
567	Italy	1919.09.10	Val di Paglia	42,793	11,788	5,42	M_{w}	7_8		42,833	11,783	San Casciano dei Bagni-Ponte a Rigo	4,47		Water ejection
568	Greece	1921.09.13	Amfilohia	38,82	20,93	5,5	M_{w}	8	11			Amfiloxia	4,50	11,88	B3
569	Greece	1926.03.18	Kastelorizo Isle	35,840	29,500	6,5	M_{w}	8	10	36,148	29,590	Kastellorizo	35,20	36,59	Unspecified
570	Albania	1926.12.17	Dyrrachium	41,3	19,5	6,3	M_{w}	9	20			Durres	5,60	20,77	A2
571	Albania	1926.12.17	Dyrrachium	41,3	19,5	6,3	Mw	9	20			Shijak	61,00	64,20	A2
572	Turkey	1928.03.31	Torbali	38,18	27,8	6,3	Mw	9	10			Cile	31,50	33,05	С
573	Turkey	1928.03.31	Torbali	38,18	27,8	6,3	Mw	9	10			Ahmelti	18,00	20,59	С
574	Turkey	1928.03.31	Torbali	38,18	27,8	6,3	Mw	9	10			Ucpinar	20,10	22,45	С
575	Greece	1928.04.22	Corinthos	37,94	22,98	6,3	Mw	9	8			Kalamaki	5,00	9,43	A1
576	Greece	1928.04.22	Corinthos	37,94	22,98	6,3	Mw	9	8			Brahati	15,50	17,44	A1
577	Greece	1928.04.22	Corinthos	37,94	22,98	6,3	Mw	9	8			Neranza	18,00	19,70	A1
578	Greece	1928.04.22	Corinthos	37,94	22,98	6,3	Mw	9	8			Corinthos	3,00	8,54	A5
579	Greece	1928.04.22	Corinthos	37,94	22,98	6,3	Mw	9	8			Loutraki	4,00	8,94	B2
580	Greece	1930.04.17	Corinthos	37,800	23,170	5,9	Mw	8	66	37,843	23,010	Almyri	14,85	67,65	ground craks
581	Italy	1930.07.23	Irpinia	41,07	15,36	6,62	Mw	10	14,6	41,033	15,283	Carosina	7,66	16,49	A1
582	Italy	1930.07.23	Irpinia	41,07	15,36	6,62	Mw	10	14,6	41,2	15,033	Montecalvo Irpino [2]	30,98	34,24	A1
583	Italy	1930.10.30	Senigallia	43,689	13,385	6,02	Mw	8	14,6	44,56	10,57	Viano - Regnano	244,73	245,16	water sand ejection
584	FYROM	1931.03.08	Valadovo	41,28	22,49	6,7	Mw	10	10			Valadovo	40,00	41,23	С
585	Greece	1932.09.26	Chalkidiki	40,45	23,76	6,8	Mw	10	5			Unspecified	52,00	52,24	A5
586	Turkey	1935.01.04	Erdek	40,4	27,5	6,2	Mw	9				Islet if Haysriz	34,00		A3
587	Greece	1938.07.20	Oropos	38,300	23,660	5,9	Mw	8	42	38,319	23,793	Palatia	11,80	43,63	Ground cracks and sand boils
588	Greece	1938.07.20	Oropos	38,300	23,660	5,9	Mw	8	42	38,333	23,762	Oropu	9,63	43,09	Ground cracks and sand boils
589	Greece	1938.07.20	Oropos	38,300	23,660	5,9	Mw	8	42	38,333	23,730	Chalkoutsi	7,13	42,60	Ground cracks and sand boils
590	Greece	1941.03.01	Larisa	39,730	22,460	6,1	Mw	8	25	39,707	22,427	Kouluri	3,81	25,29	river bank failure
591	Greece	1941.03.01	Larisa	39,730	22,460	6,1	Mw	8	25	39,727	22,425	Kouluri2	3,01	25,18	river bank failure
592	Greece	1941.03.01	Larisa	39,730	22,460	6,1	Mw	8	25	39,753	22,413	Girtoni	4,76	25,45	river bank failure
593	Greece	1941.03.01	Larisa	39,730	22,460	6,1	Mw	8	25	39,682	22,443	Omorfochori	5,53	25,61	river bank failure
594	Greece	1941.03.01	Larisa	39,730	22,460	6,1	Mw	8	25	39,608	22,568	Glafki	16,42	29,91	river bank failure
595	Greece	1941.03.01	Larisa	39,730	22,460	6,1	Mw	8	25	39,656	22,583	Eleftherio	13,36	28,35	river bank failure
596	Greece	1947.10.06	Messinia	36,710	21,790	6,5	M_{w}	9	2	36,801	21,947	Corone	17,27	17,38	Unspecified
597	Greece	1947.10.06	Messinia	36,710	21,790	6,5	Mw	9	2	36,962	21,691	Gialova	29,38	29,45	Unspecified
598	Greece	1948.04.22	Lefkas Isle	38,68	20,57	6,5	Mw	9	12			Basiliki	3,00	12,37	A5
599	Greece	1948.06.30	Lefkas Isle	38,8	20,6	6,5	M_{w}	9	36			Lefkada	10,00	37,36	B3
600	Albania	1948.08.27	Shkodora	42	19,5	5,3	Mw	8	41			Trush	5,50	41,37	A1

Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information

v. 1.0 - ANNEX

601	Greece	1949.07.23	Hios Isle	38.58	26.23	6.7	Mw	9	17			Hios	23.00	28.60	B3
602	Turkey	1953.03.18	Yenise	40,02	27,53	7,2	Mw	9				Lake Manyas	60,00	-,	C
603	Greece	1953.08.12	Cephalonia Isle	38,1	20,35	7	Mw	10	11			Lyxouri	13,00	17,03	В3
604	Greece	1953.08.12	Cephalonia Isle	38,1	20,35	7	Mw	10	11			Ithaki (Bathi)	43,00	44,38	B3
605	Greece	1953.08.12	Cephalonia Isle	38,1	20,35	7	Mw	10	11			Agostoli	15,00	18,60	В3
606	Greece	1953.08.12	Cephalonia Isle	38,1	20,35	7	Mw	10	11			Zakynthos	60,00	61,00	B3, B3
607	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,345	22,337	Mikro evidrio	13,70	21,06	Unspecified
608	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,263	22,755	Aghialos	41,08	44,09	Unspecified
609	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,366	22,940	Volos	58,79	60,93	Unspecified
610	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,340	23,010	Agria	64,03	65,99	Unspecified
611	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,093	22,227	Panagia	15,91	22,56	Unspecified
612	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,080	22,424	Karies	20,80	26,24	Unspecified
613	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,341	22,198	Pashalitsa	14,22	21,41	Unspecified
614	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,366	22,215	Polineri	16,13	22,72	Unspecified
615	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,264	22,320	Vrisisa	5,12	16,80	Unspecified
616	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,392	22,137	Kipseli	21,82	27,06	Unspecified
617	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,194	22,249	Petrilia	4,81	16,71	Unspecified
618	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,401	21,890	Artesiano	38,58	41,76	Unspecified
619	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,066	22,206	Perivoli	19,33	25,09	Unspecified
620	Greece	1954.04.30	Sofades	39,230	22,280	6,5	Mw	9	16	39,132	22,380	Vuzi	13,90	21,19	Unspecified
621	Hungary	1956.01.12	Dunaharaszti	47,350	19,090	5,5	Mw	8	14	47,342	19,045	Szilágyi_street	3,49	14,43	sand boils siltation of dug wells
622	Hungary	1956.01.12	Dunaharaszti	47,350	19,090	5,5	Mw	8	14	47,346	19,048	Árpád_street	3,17	14,35	sand boils siltation of dug wells
623	Hungary	1956.01.12	Dunaharaszti	47,350	19,090	5,5	Mw	8	14	47,345	19,049	Rákóczi_street	3,12	14,34	sand boils siltation of dug wells
624	Hungary	1956.01.12	Dunaharaszti	47,350	19,090	5,5	M_w	8	14	47,357	19,094	Damjanich_street	0,86	14,03	sand boils siltation of dug wells
625	Hungary	1956.01.12	Dunaharaszti	47,350	19,090	5,5	Mw	8	14	47,360	19,087	Duna_street	1,15	14,05	sand boils siltation of dug wells
626	Hungary	1956.01.12	Dunaharaszti	47,350	19,090	5,5	M_w	8	14	47,336	19,059	Liget_Csarda (Taksony)	2,83	14,28	sand boils ground cracks
627	Albania	1959.09.01	Lushnje	40,850	19,960	6,3	M_w	8_9	25	40,817	19,869	Kozare	8,49	26,40	Unspecified
628	Albania	1962.03.18	Fier	40,7	19,63	5,9	Mw	8	15			Mifol	14,00	20,52	A1
629	Albania	1962.03.18	Fier	40,7	19,63	5,9	Mw	8	15			Novosel	14,00	20,52	A1
630	Albania	1962.03.18	Fier	40,7	19,63	5,9	Mw	8	15			Fier	8,00	17,00	A1
631	Greece	1965.07.06	Eratini	38,37	22,4	6,2	Mw	8	18	38,239	22,131	Temeni	27,63	32,98	Unspecified
632	Greece	1965.07.06	Eratini	38,37	22,4	6,2	Mw	8	18	38,169	22,326	Acrata	23,27	29,42	Unspecified
633	Greece	1965.07.06	Eratini	38,37	22,4	6,2	Mw	8	18	38,355	22,220	Eratini	15,79	23,94	Unspecified
634	Greece	1966.10.29	Amfilohia	38,78	21,11	5,7	Mw	8	1			Amfilohia	9,00	9,06	В3
635	Turkey	1967.07.22	Mudurnu	40,7	30,7	7,3	Mw	10				Cihadiye	43,00		A1
636	Turkey	1967.07.22	Mudurnu	40,7	30,7	7,3	M_w	10				Cihadiye	43,00		A2
637	Turkey	1967.07.22	Mudurnu	40,7	30,7	7,3	Mw	10				Sapanca	40,00		A1, A2, A4
638	Turkey	1967.07.22	Mudurnu	40,7	30,7	7,3	Mw	10				Adapazari	20,00		A1, A2, B5
639	Italy	1968.01.15	Belice Valley	37,78	13,03	5,67	Mw	10	3	37,706	13,259	Bisacquino	21,76	21,96	Liquefaction
640	Italy	1968.01.15	Belice Valley	37,78	13,03	5,67	Mw	10	3	37,7	13,266	Bisacquino	22,58	22,78	Ground cracks water sand ejection
641	Italy	1968.01.15	Belice Valley	37,78	13,03	5,67	M_{w}	10	3	37,897	13,096	Camporeale	14,25	14,56	Ground cracks water sand ejection
642	Italy	1968.01.15	Belice Valley	37,78	13,03	5,67	M _w	10	3	37,741	13,001	Salaparuta- C. da Mulino Nuovo	5,03	5,86	Ground cracks
643	Italy	1968.01.15	Belice Valley	37,78	13,03	5,67	M _w	10	3	37,729	13,185	Contessa Entellina	14,76	15,07	Ground cracks water sand ejection

LIQUEFACT

Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

644	Italy	1968.01.15	Belice Valley	37,78	13,03	5,67	Mw	10	3	37,7	12,933	Pantanna- Timpone Perollo	12,33	12,69	Ground cracks water sand ejection
645	Turkey	1968.09.03	Amasra	41,777	32,45	5,81	Mw		5	41,645	32,378	Camalti	15,85	16,62	Sand boils & open cracks
646	Turkey	1969.03.28	Alasehir	38,29	28,5	6,2	Mw	8	4			Unspecified	35,00	35,23	С
647	Turkey	1970.03.28	Gediz	39,21	29,51	6,2	Mw	9	18	39,097	28,977	Simav	47,66	50,94	Sand boils
648	Turkey	1970.03.28	Gediz	39,21	29,51	6,2	Mw	9	18	39,343	29,256	Emet	26,40	31,95	Sand boils
649	Turkey	1970.03.28	Gediz	39,21	29,51	6,2	Mw	9	18	38,991	29,401	Gediz	26,11	31,72	Sand boils
650	Turkey	1971.05.12	Burdur Lake	37,64	29,72	5,8	Mw	8	30	37,581	30,094	Hacilar	33,60	45,04	Sand boils
651	Turkey	1971.05.12	Burdur Lake	37,64	29,72	5,8	Mw	8	30	37,621	30,065	Yarkoy	30,46	42,76	Sand boils
652	Turkey	1975.03.27	Saros	40,4	26,1	5,8	Mw	7	15			Kavak Suyu	68,00	69,63	С
653	Greece	1975.12.31	Aetolia	38,49	21,7	5,4	Mw	8	19			Unspecified	7,00	20,25	с
654	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9 10	5,7	46,048	13,083	Tomba est	29,04	29,60	A4, D
655	Italy	1976.05.06	Friuli	46.262	13.299	6.45	M.	9 10	5.7	46.227	13.077	Tomba di sotto	17.51	18.42	D
656	Italy	1976.05.06	Friuli	46.262	13.299	6.45	Mw	9 10	5.7	46.21	13.082	Tomba di sotto-Presa	17.67	18.56	D
657	Italy	1976.05.06	Friuli	46.262	13.299	6.45	M.	9 10	5.7	46.29	13.05	Trasaghis- Avasinis	19.39	20.21	Ground cracks water sand ejection
658	Italy	1976.05.06	Friuli	46.262	13,299	6.45	Mw	9 10	5.7	46.306	13,101	Bordano- Salez	15,99	16.97	Ground cracks water sand ejection
659	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M _w	9_10	5,7	46,303	13,115	Bordano- Alveo del F. Tagliamento	14,86	15,92	Ground cracks water sand ejection
660	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,248	13,098	Osoppo- Colle Cucchiaro	15,54	16,55	sand boils
661	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,206	13,043	Majano- Colle Baracchino	20,66	21,43	Ground cracks sand boils
662	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,2	13,066	Majano- Casa Toful	19,21	20,04	ground cracks sand boils
663	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,239	13,095	Campo Buia (C. Ledra- Tagliamento)	15,90	16,89	sand boils
664	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,236	13,104	Campo Buia (Rio Campo)	15,27	16,30	sand boils
665	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,231	13,105	Campo Buia (C.Garzolino)	15,32	16,34	sand boils
666	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,229	13,096	Campo Buia (Campo)	16,04	17,02	sand boils
667	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,225	13,096	Campo Buia (Sorgente Rio Gelato)	16,15	17,13	liquefaction
668	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,27	13,143	Gemona del Friuli- Godo	12,03	13,31	Ground cracks water sand ejection
669	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,269	13,141	Gemona del Friuli- La Roggia	12,17	13,44	sand boils
670	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,218	13,016	Osoppo-Laghetti Palar	22,31	23,03	liquefaction
671	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,25	13,12	Lessi	13,83	14,96	sand boils
672	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,245	13,114	Gemona del Friuli (Campo Lessi)	14,35	15,44	sand boils
673	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,243	13,126	Gemona del Friuli- F. Ledra	13,47	14,63	sand boils
674	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,19	13,05	Majano Susans	20,77	21,53	sand boils
675	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,184	13,071	Majano	19,57	20,39	Ground cracks sand boils
676	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,182	13,11	Colloredo di Monte Albano- Lauzzara- Maneva	17,05	17,98	sand boils
677	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M _w	9_10	5,7	46,18	13,11	Colloredo di Monte Albano- Lauzzara- Mels	17,17	18,09	ground cracks water sand ejcetion
678	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,224	13,049	Osoppo- Molino del Cucco	19,69	20,50	sand boils
679	Italy	1976.05.06	Friuli	46,262	13,299	6,45	Mw	9_10	5,7	46,181	13,088	Majano- Pers	18,57	19,42	ground cracks
680	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,221	13,068	Osoppo- Rivoli di Osoppo	18,35	19,21	liquefaction
681	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_w	9_10	5,7	46,229	13,115	Buia- San Floreano	14,62	15,69	liquefaction

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

682	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,32	13,05	Trasaghis-Alesso	20,20	20,98	liquefaction
683	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,282	13,075	Trasaghis	17,36	18,28	sand boils
684	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,214	13,09	Tomba di Buia (F.Tagliamentuzzo)	16,94	17,87	liquefaction
685	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,213	13,091	Tomba di Buia (Rio Gelato)	16,90	17,84	Liquefaction
686	Italy	1976.05.06	Friuli	46,262	13,299	6,45	M_{w}	9_10	5,7	46,215	13,083	Tomba di Buia	17,42	18,33	water sand ejection
687	Italy	1976.09.15	Friuli	46,3	13,174	5,95	Mw	8_9	11,3	46,29	13,05	Trasaghis- Avasinis	9,59	14,82	ground cracks water sand ejection
688	Italy	1976.09.15	Friuli	46,3	13,174	5,95	Mw	8_9	11,3	46,206	13,043	Majano- Colle Baracchino	14,52	18,40	ground cracks sand boils
689	Italy	1976.09.15	Friuli	46,3	13,174	5,95	Mw	8_9	11,3	46,316	13,102	Bordano	5,81	12,71	liquefaction
690	Italy	1976.09.15	Friuli	46,3	13,174	5,95	M_{w}	8_9	11,3	46,176	13	San Giacomo- Lago di Ragogna	19,22	22,30	ground cracks
691	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_{w}	9	92,5	44,419	26,090	19 (Bucarest)	159,21	184,13	Liquefaction_sand_boil_&_open_cracks
692	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	43,930	26,039	1	212,40	231,67	unspecified
693	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	43,889	25,968	2	218,34	237,13	unspecified
694	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	43,764	23,889	3	318,05	331,23	unspecified
695	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	43,779	23,890	4	316,81	330,03	unspecified
696	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	44,241	24,262	5	259,81	275,78	unspecified
697	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	44,133	23,944	6	286,82	301,37	unspecified
698	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	43,728	24,820	7	273,97	289,16	unspecified
699	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	43,781	24,785	8	270,64	286,02	unspecified
700	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_{w}	9	92,5	43,783	24,572	9	280,49	295,35	unspecified
701	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	43,767	24,450	10	287,91	302,40	unspecified
702	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	43,736	25,218	11	256,92	273,07	unspecified
703	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	43,685	25,288	12	259,43	275,43	unspecified
704	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	43,638	25,390	13	260,69	276,61	unspecified
705	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	43,827	25,412	14	240,87	258,02	unspecified
706	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	43,827	25,485	15	238,38	255,70	unspecified
707	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	43,757	25,518	16	244,43	261,35	unspecified
708	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	44,297	25,919	17	176,67	199,42	unspecified
709	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	44,230	26,438	18	173,15	196,31	unspecified
710	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	44,554	27,291	20	141,52	169,07	unspecified
711	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	45,116	27,357	21	86,38	126,56	unspecified
712	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	45,150	27,333	22	82,18	123,73	unspecified
713	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	M_w	9	92,5	45,105	27,192	23	81,29	123,14	unspecified
714	Romania	1977.03.04	Vrancea	45,770	26,760	7,4	Mw	9	92,5	45,689	27,520	24	59,69	110,09	unspecified
715	Italy	1978.04.15	Patti Gulf	38,385	15,086	6,03	Mw	8	17,9	38,124	15,06	Oliveri	29,12	34,18	B1
716	Greece	1978.06.20	Stivos	40,71	23,27	6,2	Mw	8	3			Stivos	10,00	10,44	A2
717	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	42,427	18,769	Kotor	51,58	53,20	Liquefaction & lateral spreading
718	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M _w	9_10	13	42,451	18,575	Zelenica	62,93	64,26	Liquefaction & lateral spreading
719	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	42,088	19,100	Bar port	7,96	15,24	Liquefaction & lateral spreading

Deliverable 2.4

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

720	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	41,877	19,379	Pulaj	30,11	32,79	Failure of river bank
721	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	42,006	19,421	Obot	29,04	31,81	Failure of river bank
722	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	42,026	19,518	Beltoje	37,02	39,24	Failure of river bank
723	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	41,863	19,442	Velipoja	35,39	37,70	Ground subsidance & sand boil
724	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	41,993	19,399	Dajc	27,36	30,29	Ground subsidance & sand boil
725	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13			Mushan	41,50	43,49	A2
726	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13			Tivat	73,00	74,15	A1, A2, B2, B3
727	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13			Bar	25,00	28,18	B2, B3
728	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13			Lezha	55,00	56,52	B7
729	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	42,467	18,675	Kamenari	59,41	60,82	Liquefaction Road failure
730	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M_{w}	9_10	13	42,450	18,653	Bijela port	58,88	60,30	liquefaction, port and shipyard facilities damaged
731	Montenegro	1979.04.15	Montenegro	42,020	19,070	6,7	M _w	9_10	13	42,015	19,434	Obot	30,08	32,77	sinking of water well
731 732	Montenegro Greece	1979.04.15 1980.07.09	Montenegro Almiros	42,020 39,290	19,070 22,910	6,7 6,2	M _w	9_10 8	13 47	42,015 39,188	19,434 22,824	Obot Almyros	30,08 13,55	32,77 48,91	sinking of water well Unspecified
731 732 733	Montenegro Greece Greece	1979.04.15 1980.07.09 1980.07.09	Montenegro Almiros Almiros	42,020 39,290 39,290	19,070 22,910 22,910	6,7 6,2 6,2	M _w M _w	9_10 8 8	13 47 47	42,015 39,188 39,278	19,434 22,824 22,826	Obot Almyros Nea Anchialos	30,08 13,55 7,35	32,77 48,91 47,57	sinking of water well Unspecified Unspecified
731 732 733 734	Montenegro Greece Greece Greece	1979.04.15 1980.07.09 1980.07.09 1980.07.09	Montenegro Almiros Almiros Almiros	42,020 39,290 39,290 39,290	19,070 22,910 22,910 22,910	6,7 6,2 6,2 6,2	M _w M _w M _w	9_10 8 8 8	13 47 47 47	42,015 39,188 39,278 39,268	19,434 22,824 22,826 22,815	Obot Almyros Nea Anchialos Nea Anchialos2	30,08 13,55 7,35 8,54	32,77 48,91 47,57 47,77	sinking of water well Unspecified Unspecified Unspecified
731 732 733 734 735	Montenegro Greece Greece Greece	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09	Montenegro Almiros Almiros Almiros Almiros	42,020 39,290 39,290 39,290 39,290 39,290	19,070 22,910 22,910 22,910 22,910 22,910	6,7 6,2 6,2 6,2 6,2	M _w M _w M _w M _w	9_10 8 8 8 8	13 47 47 47 47 47	42,015 39,188 39,278 39,268 39,243	19,434 22,824 22,826 22,815 22,812	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada	30,08 13,55 7,35 8,54 9,93	32,77 48,91 47,57 47,77 48,04	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified
731 732 733 734 735 736	Montenegro Greece Greece Greece Greece	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.07.09	Montenegro Almiros Almiros Almiros Almiros Almiros	42,020 39,290 39,290 39,290 39,290 39,290 39,290	19,070 22,910 22,910 22,910 22,910 22,910 22,910	6,7 6,2 6,2 6,2 6,2 6,2 6,2	M _w M _w M _w M _w	9_10 8 8 8 8 8 8	13 47 47 47 47 47 47	42,015 39,188 39,278 39,268 39,243 39,344	19,434 22,824 22,826 22,815 22,812 22,935	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos	30,08 13,55 7,35 8,54 9,93 6,38	32,77 48,91 47,57 47,77 48,04 47,43	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified
731 732 733 734 735 736 737	Montenegro Greece Greece Greece Greece Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Almiros Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 39,290 39,290 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414	6,7 6,2 6,2 6,2 6,2 6,2 6,2 6,81	M _w M _w M _w M _w M _w	9_10 8 8 8 8 8 8 10	13 47 47 47 47 47 47 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783	19,434 22,824 22,826 22,815 22,812 22,935 15,233	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele	30,08 13,55 7,35 8,54 9,93 6,38 16,60	32,77 48,91 47,57 47,77 48,04 47,43 20,49	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks
731 732 733 734 735 736 737 738	Montenegro Greece Greece Greece Greece Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 39,290 39,290 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,2 6,2 6,81 6,81	M _w M _w M _w M _w M _w M _w	9_10 8 8 8 8 8 10 10	13 47 47 47 47 47 47 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24	sinking of water well Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection
731 732 733 734 735 736 737 738 739	Montenegro Greece Greece Greece Greece Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 39,290 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,2 6,81 6,81 6,81	M _w M _w M _w M _w M _w M _w M _w	9_10 8 8 8 8 8 10 10 10 10	13 47 47 47 47 47 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333 15,434	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83	sinking of water well Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks Ground cracks Unspecified
731 732 733 734 735 736 737 738 739 740	Montenegro Greece Greece Greece Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 39,290 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,81 6,81 6,81 6,81	Mw Mw Mw Mw Mw Mw Mw Mw	9_10 8 8 8 8 10 10 10 10 10	13 47 47 47 47 47 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333 15,434 15,1	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Liquefaction
731 732 733 734 735 736 737 738 739 740 741	Montenegro Greece Greece Greece Italy Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 39,290 40,724 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,81 6,81 6,81 6,81 6,81	Mw Mw Mw Mw Mw Mw Mw Mw Mw	9_10 8 8 8 8 10 10 10 10 10 10 10	13 47 47 47 47 47 12 12 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816 40,867	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333 15,434 15,1 15,167	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno Lioni- SS 7 Ofantina	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36 26,18	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79 28,80	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Liquefaction Iiquefaction Ground cracks water sand ejection
731 732 733 734 735 736 737 738 739 740 741 742	Montenegro Greece Greece Greece Italy Italy Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 40,724 40,724 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,2 6,81 6,81 6,81 6,81 6,81	Mw	9_10 8 8 8 8 10 10 10 10 10 10 10 10 10 10	13 47 47 47 47 47 12 12 12 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816 40,867 41,033	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333 15,434 15,1 15,167 15,033	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno Lioni- SS 7 Ofantina Montecalvo Irpino	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36 26,18 46,99	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79 28,80 48,50	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Liquefation Iiquefaction Ground cracks water sand ejection Ground cracks water sand ejection
731 732 733 734 735 736 737 738 739 740 741 742 743	Montenegro Greece Greece Greece Italy Italy Italy Italy Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 40,724 40,724 40,724 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,2 6,81 6,81 6,81 6,81 6,81 6,81	Mw	9_10 8 8 8 8 10 10 10 10 10 10 10 10 10 10	13 47 47 47 47 12 12 12 12 12 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816 40,867 41,033 40,738	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,434 15,1 15,167 15,033 15,491	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno Lioni- SS 7 Ofantina Montecalvo Irpino Muro Lucano	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36 26,18 46,99 6,67	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79 28,80 48,50 13,73	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Liquefation liquefaction Ground cracks water sand ejection Ground cracks water sand ejection Ground cracks water sand ejection
731 732 733 734 735 736 737 738 739 740 741 742 743 744	Montenegro Greece Greece Greece Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 40,724 40,724 40,724 40,724 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,81 6,81 6,81 6,81 6,81 6,81 6,81 6,81	Mw	9_10 8 8 8 8 10 10 10 10 10 10 10 10 10 10	13 47 47 47 47 12 12 12 12 12 12 12 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816 40,867 41,033 40,738	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,233 15,434 15,1 15,167 15,033 15,491 15,491	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno Lioni- SS 7 Ofantina Montecalvo Irpino Muro Lucano	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36 26,18 46,99 6,67 6,94	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79 28,80 48,50 13,73 13,86	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Liquefation liquefaction Ground cracks water sand ejection Ground cracks water sand ejection Ground cracks water sand ejection Ground cracks water sand ejection
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745	Montenegro Greece Greece Greece Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,81 6,81 6,81 6,81 6,81 6,81 6,81 6,81	Mw	9_10 8 8 8 8 10 10 10 10 10 10 10 10 10 10	13 47 47 47 12 12 12 12 12 12 12 12 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816 40,867 41,033 40,738 40,744 40,767	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333 15,434 15,1 15,167 15,033 15,491 15,492 15,465	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno Lioni- SS 7 Ofantina Montecalvo Irpino Muro Lucano Muro Lucano	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36 26,18 46,99 6,67 6,94 6,43	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79 28,80 48,50 13,73 13,86 13,61	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Liquefation liquefaction Ground cracks water sand ejection Ground cracks water sand ejection
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746	Montenegro Greece Greece Greece Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,2 6,81 6,81 6,81 6,81 6,81 6,81 6,81 6,81	M., M., M., M., M., M., M., M., M., M.,	9_10 8 8 8 8 10 10 10 10 10 10 10 10 10 10	13 47 47 47 12 12 12 12 12 12 12 12 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816 40,867 41,033 40,738 40,748 40,778	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333 15,434 15,1 15,167 15,033 15,491 15,492 15,465 15,183	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno Lioni- SS 7 Ofantina Montecalvo Irpino Muro Lucano Muro Lucano Muro Lucano	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36 26,18 46,99 6,67 6,94 6,43 19,49	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79 28,80 48,50 13,73 13,86 13,61 22,89	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Liquefaction Ground cracks water sand ejection Ground cracks water sand ejection
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746	Montenegro Greece Greece Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,81 6,81 6,81 6,81 6,81 6,81 6,81 6,81	Mw	9_10 8 8 8 8 10 10 10 10 10 10 10 10 10 10	13 47 47 47 12 12 12 12 12 12 12 12 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816 40,867 41,033 40,738 40,744 40,767 40,717 40,629	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333 15,434 15,1 15,167 15,033 15,491 15,492 15,465 15,183 14,864	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno Lioni- SS 7 Ofantina Montecalvo Irpino Muro Lucano Muro Lucano Muro Lucano Senerchia	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36 26,18 46,99 6,67 6,94 6,43 19,49 47,58	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79 28,80 48,50 13,73 13,86 13,61 22,89 49,07	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Iquefaction Ground cracks water sand ejection
731 732 733 734 735 736 737 738 739 740 741 742 743 745 745 746 745 746	Montenegro Greece Greece Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy	1979.04.15 1980.07.09 1980.07.09 1980.07.09 1980.07.09 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23 1980.11.23	Montenegro Almiros Almiros Almiros Almiros Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata Irpinia-Basilicata	42,020 39,290 39,290 39,290 39,290 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724 40,724	19,070 22,910 22,910 22,910 22,910 22,910 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414 15,414	6,7 6,2 6,2 6,2 6,81 6,81 6,81 6,81 6,81 6,81 6,81 6,81	Mw Mw	9_10 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10	13 47 47 47 12 12 12 12 12 12 12 12 12 12 12 12 12	42,015 39,188 39,278 39,268 39,243 39,344 40,783 40,666 40,898 40,816 40,867 41,033 40,738 40,744 40,767 40,717 40,629 40,85	19,434 22,824 22,826 22,815 22,812 22,935 15,233 15,333 15,333 15,434 15,1 15,167 15,033 15,491 15,492 15,465 15,183 14,864 15,533	Obot Almyros Nea Anchialos Nea Anchialos2 Dimitriada Volos Calabritto- Alto Sele Buccino Calitri Acerno- Lago Laceno Lioni- SS 7 Ofantina Montecalvo Irpino Muro Lucano Muro Lucano Muro Lucano Senerchia Pontecagnano- Torre Picentina	30,08 13,55 7,35 8,54 9,93 6,38 16,60 9,40 19,43 28,36 26,18 46,99 6,67 6,94 6,43 19,49 47,58 17,23	32,77 48,91 47,57 47,77 48,04 47,43 20,49 15,24 22,83 30,79 28,80 48,50 13,73 13,86 13,61 22,89 49,07 21,00	sinking of water well Unspecified Unspecified Unspecified Unspecified Unspecified Unspecified Ground cracks Ground cracks water sand ejection Liquefation Iquefaction Ground cracks water sand ejection

Deliverable 2.4

 $\langle 0 \rangle$

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

750	Italy	1980.11.23	Irpinia-Basilicata	40,724	15,414	6,81	Mw	10	12	40,767	14,583	S. Marzano del Sarno	70,19	71,21	liquefaction
751	Italy	1980 11 23	Irninia-Basilicata	40 724	15 /1/	6.81	м	10	12	10 893	14 856	S. Michele di Serino	50.60	52.00	ground cracks water sand ejection
/51	italy	1980.11.25	ii pinia-basincata	40,724	13,414	0,81	IVIW	10	12	40,893	14,850	3. Withele di Serino	50,00	52,00	subsidence
752	Italy	1980.11.23	Irpinia-Basilicata	40,724	15,414	6,81	Mw	10	12	40,873	14,862	S. Michele di Serino (R. Sabato)	49,34	50,78	water sand ejection
753	Italy	1980.11.23	Irpinia-Basilicata	40,724	15,414	6,81	Mw	10	12	40,893	14,859	S. Michele di Serino (R. Sabato)	50,36	51,77	water sand ejection
754	Italy	1980.11.23	Irpinia-Basilicata	40,724	15,414	6,81	Mw	10	12	41,76	14,949	Scafati	121,62	122,21	ground cracks sand boils
755	Italy	1980.11.23	Irpinia-Basilicata	40,724	15,414	6,81	Mw	10	12	41,062	15,116	Sturno	45,18	46,75	liquefaction
756	Italy	1980.11.23	Irpinia-Basilicata	40,724	15,414	6,81	M_{w}	10	12	40,881	14,949	Valturara Irpina- P. del Dragone	42,87	44,52	ground cracks water sand ejection
757	Greece	1981.02.24	Alkionides	38,230	22,970	6,4	Mw	9	18	37,931	22,891	Archeo Limani	33,97	38,44	Unspecified
758	Greece	1981.02.24	Alkionides	38,230	22,970	6,4	Mw	9	18	38,057	23,103	Mavrolimni	22,49	28,80	Unspecified
759	Greece	1981.02.24	Alkionides	38,230	22,970	6,4	Mw	9	18	38,105	23,220	Psatha	25,91	31,55	Unspecified
760	Greece	1981.03.04	Alkionides	38,2	23,25	6,5	Mw	9	18			Kalamaki	11,80	21,52	С
761	Greece	1988.10.16	Killini	37,930	20,920	5,6	Mw	8	25	37,935	21,142	Killini	19,48	31,70	ground cracks
762	Greece	1988.10.16	Killini	37,930	20,920	5,6	Mw	8	25	37,808	21,232	Bouka killini	30,57	39,49	Unspecified
763	Italy	1990.12.13	South-Eastern Sicily	37,306	15,429	5,61	Mw	10	10	37,231	15,221	Augusta	20,21	22,55	B1
764	Turkey	1992.03.13	Erzincan	39,710	39,610	6,7	Mw	9	27	39,664	39,677	Altinbasak_railway	7,69	28,07	Liquefaction railway failure
765	Turkey	1992.03.13	Erzincan	39,710	39,610	6,7	Mw	9	27	39,730	39,626	Eksisu	2,56	27,12	Liquefaction road failure
766	Greece	1992.03.20	Milos Isle	36,660	24,490	5,2	Mw	6	11	36,687	24,445	Hivadolimni	5,01	12,09	ground cracks and water ejection
767	Greece	1995.05.13	Kozani	40,170	21,690	6,3	Mw	9	14	40,071	21,824	Kozani	15,85	21,15	sand boil
768	Greece	1995.05.13	Kozani	40,16	21,67	6,3	Mw	9	14			Polifitos Lake	18,00	22,80	A2
769	Greece	1995.05.13	Kozani	40,16	21,67	6,3	Mw	9	14			Ryminio	16,00	21,26	B6
770	Greece	1995.06.15	Aeghio	38,400	22,270	6,3	Mw	8	5			Nikoleika	25,00	25,50	A1
771	Greece	1995.06.15	Aeghio	38,400	22,270	6,3	Mw	8	5			Meganitis r.	25,00	25,50	A1
772	Greece	1995.06.15	Aeghio	38,400	22,270	6,3	Mw	8	5			Rizomylos	16,00	16,76	A5
773	Greece	1995.06.15	Aeghio	38,400	22,270	6,3	Mw	8	5			Abythos	8,00	9,43	A5
774	Greece	1995.06.15	Aeghio	38,400	22,270	6,3	Mw	8	5			Eratini	7,00	8,60	B3
775	Greece	1995.06.15	Aeghio	38,400	22,270	6,3	Mw	8	5			Selinitis r.	10,00	11,18	В7
776	Greece	1995.06.15	Aeghio	38,400	22,270	6,3	Mw	8	5	38,252	22,081	Aegion Bay	23,30	23,83	liquefaction
777	Greece	1995.06.15	Aeghio	38,400	22,270	6,3	Mw	8	5	38,215	22,141	Rizomylos	23,46	23,98	liquefaction
778	Turkey	1995.10.01	Dinar	38,075	30,142	6	Mw		30,9	38,080	30,160	1	1,67	30,95	lateral spreading
779	Turkey	1995.10.01	Dinar	38,075	30,142	6	Mw		30,9	38,082	30,159	2	1,65	30,94	sand boils
780	Turkey	1995.10.01	Dinar	38,075	30,142	6	Mw		30,9	38,079	30,160	3	1,64	30,94	sand boils
781	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,902	35,565	Abdiolgu_1	5,93	23,75	lateral spreading
782	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,914	35,574	Abdioglu_school	7,44	24,17	v
783	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,843	35,531	Asmali_bridge	1,86	23,08	sand boils ground cracks
784	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,820	35,469	Esenler	7,91	24,32	sand boils ground cracks
785	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,830	35,511	Kutuklu	4,18	23,38	sand boils ground cracks
786	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,850	35,584	Guveloglu_1	3,04	23,20	sand boils ground cracks
787	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,856	35,583	Guveloglu_2	2,98	23,19	sand boils ground cracks
788	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,876	35,589	Kaslica	4,53	23,44	sand boils ground cracks
789	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,878	35,568	Buyukkapili	3,48	23,26	sand boils ground cracks

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

-															
790	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,903	35,608	Vayvayli	7,80	24,29	sand boils ground cracks
791	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,939	35,593	Gecitli	10,57	25,31	sand boils ground cracks
792	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,958	35,624	Misis	13,66	26,75	sand boils ground cracks
793	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,992	35,699	Cokca	20,64	30,90	sand boils ground cracks
794	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	36,998	35,762	Toktamis	25,04	34,00	sand boils ground cracks
795	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	37,036	35,759	Buyukmangit	27,78	36,06	sand boils ground cracks
796	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	37,016	35,802	Burhaniye	28,98	37,00	sand boils ground cracks
797	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	37,034	35,794	Ceyhan	29,81	37,65	sand boils ground cracks
798	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	M_w	9	23	37,097	35,812	Mercimek	36,03	42,74	sand boils ground cracks
799	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	37,115	35,813	Hamitbey	37,57	44,05	sand boils ground cracks
800	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	M_w	9	23	37,142	35,829	Adapinar	40,78	46,82	sand boils ground cracks
801	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	37,170	35,843	Inceyer	44,10	49,74	sand boils ground cracks
802	Turkey	1998.06.27	Adan-Ceyhan	36,850	35,550	6,3	Mw	9	23	37,182	35,900	Dikilitas	48,28	53,48	sand boils ground cracks
803	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	M_{w}	10	15	40,697	30,269	Sapanca	22,69	27,20	Ground cracks sand boils buildings sank
804	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	Mw	10	15	40,723	29,841	Golcuk	13,65	20,28	subsidence
805	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	Mw	10	15	40,778	30,375	Adapazari	32,77	36,04	buildings sank
806	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	Mw	10	15	40,745	30,389	Adapazari2	33,17	36,40	buildings sank
807	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	Mw	10	15	40,710	29,500	Altinova	42,17	44,76	Unspecified
808	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	Mw	10	15	40,695	29,386	Taskopru	51,78	53,91	Unspecified
809	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	Mw	10	15	40,715	30,415	Adapazari3	35,03	38,11	buildings sank
810	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	Mw	10	15	40,702	30,595	Akyazi	50,17	52,37	Unspecified
811	Turkey	1999.08.17	Kocaeli	40,700	30,000	7,5	Mw	10	15	41,118	30,574	Black sea cost	67,00	68,66	Unspecified
812	Turkey	2002.02.03	Cay-Eber	38,610	31,080	6,6	M_{w}		12	38,638	30,916	Kadikoy	14,59	18,89	Lateral spreading
813	Turkey	2002.02.03	Cay-Eber	38,610	31,080	6,6	M_{w}		12	38,611	30,908	Maltepe 1	14,95	19,17	Unspecified
814	Turkey	2002.02.03	Cay-Eber	38,610	31,080	6,6	M_{w}		12	38,608	30,908	Maltepe2	14,95	19,17	Unspecified
815	Turkey	2002.02.03	Cay-Eber	38,610	31,080	6,6	M_{w}		12	38,600	30,895	Maltepe3	16,12	20,09	Unspecified
816	Italy	2002.10.31	Molise	41,716	14,893	5,74	Mw	7_8	25,2	41,74	14,507	Salcito	32,15	40,85	Ground cracks
817	Turkey	2003.03.01	Bingol	38,990	40,460	6,4	Mw		8	39,051	40,300	Yaygincayir	15,39	17,35	Lateral spreading
818	Turkey	2003.03.01	Bingol	38,990	40,460	6,4	Mw		8	39,051	40,300	Uguroba_stream	15,39	17,35	sand boils
819	Turkey	2003.03.01	Bingol	38,990	40,460	6,4	Mw		8	38,881	40,525	Bingol_Plain	13,36	15,58	sand boils
820	Turkey	2003.03.01	Bingol	38,990	40,460	6,4	Mw		8	39,050	40,513	Hanocayiri	8,10	11,39	Sand boils lateral spreading
821	Greece	2003.08.14	Lefkas Isle	38,790	20,560	6,2	Mw	8	12	38,787	20,720	Ligia port	13,88	18,34	lateral spreading
822	Greece	2003.08.14	Lefkas Isle	38,790	20,560	6,2	Mw	8	12	38,712	20,715	nydri port	16,00	20,00	lateral spreading
823	Greece	2003.08.14	Lefkas Isle	38,790	20,560	6,2	Mw	8	12	38,629	20,606	Vasiliki	18,35	21,92	lateral spreading
824	Greece	2003.08.14	Lefkas Isle	38,790	20,560	6,2	Mw	8	12	38,846	20,717	Lefkada castle	14,96	19,18	sand boil and lateral spreading
825	Greece	2003.08.14	Lefkas Isle	38,790	20,560	6,2	Mw	8	12	38,832	20,709	Lefkass port	13,73	18,24	sand boils
826	Greece	2003.08.14	Lefkas Isle	38,790	20,560	6,2	Mw	8	12	38,834	20,682	Lefkada1	11,65	16,73	Unspecified
827	Greece	2003.08.14	Lefkas Isle	38,790	20,560	6,2	Mw	8	12	38,849	20,686	Lefkada2	12,74	17,50	Unspecified
828	Italy	2004.11.24	Garda occidentale	45,685	10,521	4,99	Mw	7_8	5,4	45,618	10,256	Salò	21,91	22,57	
LIQUEFACT

Deliverable 2.4

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

829	Greece	2008.06.08	NW Peloponnesus	37,980	21,510	6,4	Mw		18	38,150	21,538	Alikes	19,07	26,22	sand boils
830	Greece	2008.06.08	NW Peloponnesus	37,980	21,510	6,4	M_{w}		18	38,152	21,564	Kato_Achaia	19,71	26,69	sand boils
831	Greece	2008.06.08	NW Peloponnesus	37,980	21,510	6,4	M_{w}		18	38,147	21,560	Kato_Achaia	19,07	26,23	sand boils
832	Greece	2008.06.08	NW Peloponnesus	37,980	21,510	6,4	M_{w}		18	37,898	21,514	Roupakia	9,13	20,18	sand boils
833	Greece	2008.06.08	NW Peloponnesus	37,980	21,510	6,4	M_{w}		18	38,016	21,405	Nisi	10,04	20,61	Liquefaction
834	Greece	2008.06.08	NW Peloponnesus	37,980	21,510	6,4	M_{w}		18	37,906	21,520	Kaliva	8,28	19,81	Liquefaction
835	Italy	2009.04.06	L'Aquila	42,342	13,38	6,29	M_{w}	9_10	8,3	42,325	13,48	L'Aquila- Fiume Aterno	8,44	11,84	Sand boils lateral spreading
836	Italy	2009.04.06	L'Aquila	42,342	13,38	6,29	M_{w}	9_10	8,3	42,126	13,818	Vittorito	43,34	44,13	water ejection
837	Italy	2009.04.06	L'Aquila	42,342	13,38	6,29	M_{w}	9_10	8,3	42,306	13,483	Fossa	9,37	12,52	sand boils
838	Italy	2009.04.06	L'Aquila	42,342	13,38	6,29	M_{w}	9_10	8,3	42,336	13,475	L'Aquila - Bazzano	7,84	11,42	liquefaction
839	Italy	2009.04.06	L'Aquila	42,342	13,38	6,29	M_{w}	9_10	8,3	42,336	13,474	L'Aquila - Bazzano	7,76	11,36	liquefaction
840	Serbia	2010.11.03	Kraljevo	43,743	20,708	5,4	Mw	7_8	15,4	43,747	20,699	Sirca_1	0,87	15,42	sand boils ground cracks
841	Serbia	2010.11.03	Kraljevo	43,743	20,708	5,4	Mw	7_8	15,4	43,755	20,686	Oplakic(Oplakić)	2,24	15,56	sand boils ground cracks
842	Serbia	2010.11.03	Kraljevo	43,743	20,708	5,4	Mw	7_8	15,4	43,761	20,673	Sirca_2	3,43	15,78	Possible liquefaction
843	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,986	43,309	Celebibagi	36,63	38,55	Lateral spreading
844	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	39,005	43,323	Kasimbagi	38,00	39,85	sand boils
845	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,635	43,258	Teveliki	21,70	24,80	sand boils
846	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,582	43,228	Karasu_delta	26,31	28,92	sand boils
847	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,598	43,218	Citoren	26,39	28,99	sand boils
848	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,977	43,329	Celebibagi	34,99	36,99	sand boils
849	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,599	43,244	Topaktas	24,27	27,07	sand boils ground cracks
850	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,673	43,246	Alakoy	21,93	25,00	sand boils ground cracks
851	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,864	43,476	Lake beach	19,33	22,75	Sand boils lateral spreading
852	Turkey	2011.10.23	Van	38,691	43,497	7,1	Mw		12	38,619	43,229	Arisu	24,64	27,41	Liquefaction
853	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,762	11,481	Poggio Renatico	22,68	24,59	liquefaction
854	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,912	10,984	Concordia sulla Secchia	22,08	24,04	Liquefaction
855	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,846	10,987	Cavezzo	22,45	24,37	water sand ejection
856	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,909	11,137	Mirandola	10,03	13,82	sand boils
857	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,845	11,140	San Felice sul Panaro	11,18	14,67	sand water ejection
858	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,841	11,167	San Felice sul Panaro - Rivara	9,67	13,55	sand boils
859	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,788	11,153	Camposanto	14,75	17,54	liquefaction
860	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,858	11,286	Finale Emilia	4,45	10,49	sand boils
861	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,832	11,473	Vigarano Mainarda	18,00	20,35	liquefaction

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748 Deliverable 2.4 GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

862	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,855	11,484	Vigarano Mainarda	17,97	20,33	water sand ejection
863	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,770	11,526	Poggio Renatico	24,97	26,72	sand boils
864	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,922	10,672	Guastalla	46,66	47,62	ground cracks sand boils
865	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,809	11,448	Mirabello	17,46	19,88	ground cracks sand boils
866	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	M _w	7	9,5	44,809	11,407	Sant'Agostino - San Carlo Chiesa	14,85	17,63	water sand ejection
867	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,829	11,466	Mirabello	17,61	20,01	sand boils
868	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,725	11,316	Pieve di Cento	19,38	21,58	water sand ejection
869	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,791	11,289	Cento - Dodici Morelli	11,75	15,11	liquefaction
870	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,763	11,287	Cento - Renazzo	14,80	17,59	liquefaction
871	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,778	11,315	Cento	13,65	16,63	water ejection
872	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,806	11,402	Sant'Agostino - San Carlo	14,77	17,56	sand boils
873	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,958	10,969	Quistello - Zambone	24,17	25,97	ground cracks sand boils
874	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,803	11,377	Sant'Agostino	13,61	16,60	water sand ejection
875	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,941	10,923	Sermide - Moglia	27,26	28,87	ground cracks sand boils
876	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,906	11,317	Bondeno	4,44	10,48	ground cracks sand boils
877	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,796	11,381	Sant'Agostino	14,42	17,27	ground cracks sand boils
878	Italy	2012.05.20	Pianura Emiliana	44,895	11,263	6,09	Mw	7	9,5	44,830	11,437	Mirabello	15,52	18,19	ground cracks sand boils
879	Greece	2014.01.26	Cephalonia	38,219	20,532	6	Mw	7	16,4	38,181	20,500	Argostoli Marina 2	5,07	17,17	ground cracks
880	Greece	2014.01.26	Cephalonia	38,219	20,532	6	Mw	7	16,4	38,211	20,439	Lixourion agios spiridonas	8,23	18,35	ground cracks
881	Greece	2014.01.26	Cephalonia	38,219	20,532	6	Mw	7	16,4	38,277	20,426	Kefalonia Lagune	11,29	19,91	ground cracks
882	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,277	20,426	Kefalonia Lagune	4,27	12,08	ground cracks
883	Greece	2014.01.26	Cephalonia	38,219	20,532	6	Mw	7	16,4	38,181	20,500	Argostoli Marina 3	5,07	17,17	sand boils ground cracks
884	Greece	2014.01.26	Cephalonia	38,219	20,532	6	Mw	7	16,4	38,212	20,439	St Gerssimos Churc	8,19	18,33	ground cracks sand ejection
885	Greece	2014.01.26	Cephalonia	38,219	20,532	6	Mw	7	16,4	38,190	20,412	 Soulari	10,98	19,74	Liquefaction
886	Greece	2014.01.26	Cephalonia	38,219	20,532	6	M.,	7	16,4	38,199	20,439	Ls-1	8,39	18,42	sand boils ground cracks
887	Greece	2014.01.26	Cephalonia	38,219	20,532	6	 M.,	7	16,4	38,200	20,440	Ls 2	8,37	18,41	sand boils ground cracks
888	Greece	2014.01.26	Cephalonia	38,219	20,532	6	M.,	7	16,4	38,199	20,439	Ls 3	8,40	18,43	sand boils ground cracks
889	Greece	2014.01.26	Cephalonia	38,219	20,532	6	 M.,	7	16,4	38,262	20,385	– Petani	13,71	21,38	Liquefaction
890	Greece	2014.01.26	Cephalonia	38,219	20,532	6	M.,	7	16,4	38,157	20,385	Ionan sea Hotel	14,55	21,92	Liquefaction
891	Greece	2014.01.26	Cephalonia	38,219	20,532	6	 M.,	7	16,4	38,182	20,489	Argostoli Port 1	5,59	17,33	sand boils ground cracks
892	Greece	2014.01.26	Cephalonia	38,219	20,532	6	M.,	7	16,4	38,180	20,490	Argostoli Port 2	5,72	17,37	sand boils ground cracks
893	Greece	2014.01.26	Cephalonia	38,219	20,532	6	 M.,	7	16,4	38,176	20,491	Argostoli Municipal Market	6,03	17,47	Liquefaction
894	Greece	2014.01.26	Cephalonia	38,219	20,532	6	M.,	7	16,4	38,172	20,495	Argostoli Beach park 1	6,18	17,52	Liquefaction
895	Greece	2014.01.26	Cephalonia	38,219	20,532	6	 M.,	7	16,4	38,171	20,496	Argostoli Beach park 2	6,18	17,53	Liquefaction
896	Greece	2014.01.26	Cephalonia	38,219	20,532	6	M.,	7	16,4	38,181	20,500	Argostoli Marina 1	5,07	17,17	Liquefaction
897	Greece	2014.01.26	Cephalonia	38.219	20.532	6	M.,	7	16.4	38.180	20.501	Argostoli Marina 4	5.11	17.18	Liquefaction
898	Greece	2014.02.03	Cephalonia	38.246	20.396	5.9	M	7	11.3	38.262	20.385	Petani	2.05	11.48	Liquefaction
899	Greece	2014.02.03	Cephalonia	38.246	20.396	5.9	Mw	7	11.3	38.157	20.385	Ionan sea Hotel	9.92	15.04	Liquefaction
900	Greece	2014.01.26	Cephalonia	38,219	20.532	6	M	7	16.4	38,177	20.390	Chavriata	13.24	21.08	Possible liquefaction
901	Greece	2014.01.26	Cephalonia	38.219	20.532	6	Mw	7	16.4	38.209	20.438	Lixouri	8.27	18.37	Possible liquefaction
902	Greece	2014.02.03	Cephalonia	38,246	20,396	5.9	M	7	11.3	38,177	20,390	Chavriata	7,70	13,67	Possible liquefaction
903	Greece	2014.02.03	Cephalonia	38,246	20.396	5.9	M.	7	11.3	38,181	20,500	Argostoli Marina 2	11.63	16.21	ground cracks
904	Greece	2014.02.03	Cephalonia	38,246	20,396	5.9	M	7	11.3	38,211	20,439	Lixourion agios spiridonas	5.43	12.54	ground cracks
	2.2000			,		5,5	w		=1,5	,			-,		8

LIQUEFACT

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748

905	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,181	20,500	Argostoli_Marina_3	11,63	16,21	sand boils ground cracks
906	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,212	20,439	St_Gerssimos_Churc	5,36	12,51	ground cracks sand ejection
907	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,190	20,412	Soulari	6,40	12,98	Liquefaction
908	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,199	20,439	Ls-1	6,47	13,02	sand boils ground cracks
909	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,200	20,440	Ls_2	6,42	13,00	sand boils ground cracks
910	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,199	20,439	Ls_3	6,43	13,00	sand boils ground cracks
911	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,182	20,489	Argostoli_Port_1	10,80	15,63	sand boils ground cracks
912	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,180	20,490	Argostoli_Port_2	11,04	15,80	sand boils ground cracks
913	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,176	20,491	Argostoli_Municipal_Market	11,43	16,07	Liquefaction
914	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,172	20,495	Argostoli_Beach_park_1	12,00	16,48	Liquefaction
915	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,171	20,496	Argostoli_Beach_park_2	12,09	16,55	Liquefaction
916	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,181	20,500	Argostoli_Marina_1	11,63	16,21	Liquefaction
917	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,180	20,501	Argostoli_Marina_4	11,76	16,31	Liquefaction
918	Greece	2014.02.03	Cephalonia	38,246	20,396	5,9	Mw	7	11,3	38,209	20,438	Lixouri	5,58	12,60	Possible liquefaction
919	Greece	2015.11.17	Lefkas	38,665	20,600	6,4	Mw	8_9	10,7	38,631	20,601	Vassiliki	3,77	11,35	sand boil
920	Greece	2015.11.17	Lefkas	38,665	20,600	6,4	Mw	8_9	10,7	38,710	20,713	Nydri	11,03	15,37	sand boils ground cracks

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 700748

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

Location Quality									
MTC	Main town coordinates								
SC	Site coordinates								
MC	Municipality coordinates								
LC	Locality coordinates								
А	georeferenced coordinates								
В	coordinates obtained from maps								
С	generic description of the site								

	Liquefaction Type							
Refere	Reference: Galli (2000)							
А	ground fissuring and related phenomena							
A1	only ground fissure							
A2	water emission							
A3	mud, sand and gravel venting							
A4	sand boils							
A5	mud volcaones							
В	surface deformation							
B1	local settlement							
B2	local swelling							
С	differential settlement of building							
D	liquefaction evidence without description							

LIQUEFACT

Deliverable 2.4

GIS database of the historical liquefaction occurrences in Europe and European empirical correlations to predict the liquefaction occurrence starting from the main seismological information v. 1.0 - ANNEX

	Liquefaction Type							
Refere	nce: DALO (Papathanassiou 2004)							
A1	ground fissure with ejection of mud							
A2	sand boils							
A3	lateral spreading							
A4	settlement of the coast							
B1	settlement of building							
B2	tilting of building							
B2,B3	damages to builfdings and roads at the port/coast							
B3	settlement of quay/pier							
B4	lateral spreading of quay/pier							
B5	failure of ralway embankments							
B6	settlement of bridge							
B7	failure of river banks							
B8	damage to lifelines system							
С	evidense/no classification							
Refere	nce: Pirrotta (2007)							
А	sand boils, sand hills and sand/mud volcanoes							
В	ground deformation							
B1	ground fracturing							
B2	ground settlement							
B3	ground fracturing and settlement							
С	ground deformation with material emission							
C1	ground fracturing with gases exhalation							
C2	ground fracturing with hot water, bituminous material and/or fluid emission and/or gases exhalation							
C3	ground fracturing and settlement with water and/or gases exhalation							