Horizon 2020 European Union funding for Research & Innovation

European

Commission

CT

Pavia Workshop - October 9th 2019

ASSESSMENT AND MITIGATION OF LIQUEFACTION POTENTIAL ACROSS EUROPE

A holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters

WP4. Comparative Analysis of State of the Art Liquefaction Mitigation Measures T4.2 – Small scale centrifuge modelling

CENTRIFUGE MODELLING OF SOIL-STRUCTURE INTERACTION IN LIQUEFIABLE GROUND

Vincenzo Fioravante, Jenni Moglie, Sergio Airoldi

ISTITUTO SPERIMENTALE MODELLI GEOTECNICI

MODELLING

"...almost everything that engineers do is concerned with modelling" (*Muir Wood 2004*)

A model is an appropriate simplification of reality and

engineering is fundamentally concerned with identifying the key features to be accounted in the design and to be modelled, to solve a real problem

- > EMPIRICAL
- > PHYSICAL
 - •Full scale
 - •Small scale

MODELLING

- inductive models empiricism
- the key features of the real problem are reproduced and tested
- CONCEPTUAL > deductive models rationalism
 - Theoretical
 - Constitutive
 - Semi-empirical

PHYSICAL MODELS

Every experiment can be considered a *physical model*, directed to *confirm or develop* theoretical/empirical assumptions and *understand mechanisms*

- Key features of actual engineering problem (prototype) to be analysed are reproduced (model) and tested
- **Full scale models**: employed when the behaviour of the prototype is so dependent on the details of actual soil fabric and structure
- *Small scale models*: The key question is concerned with establishing the validity of the models and ensuring a secure way to extrapolate the observations made at small scale to the prototype scale (scaling laws)

SIMILARITY IN CENTRIFUGE

Scaling: $X^* = X_{\text{prototype}} / X_{\text{model}}$ $\Rightarrow \sigma^* = z^* \rho^* g^*$ in a accelerated field (centrifuge) $a_*g = \omega^2 R$

	Variable	Scale factor X*=X _{prototype} /X _{model}	1g model	Ng model
L	Length	L*	N	N
ρ	Soil density	$ ho^*$	1	1
3	Strain	*ع	N ^{1-α}	1
σ	Stresses (effective and total)	$\sigma^*=x^*\rho^*g^*$	Ν	1
G	Stiffness	$G^*=x^*\rho^*g^*/\epsilon^*$	Nα	1
$ ho_{f}$	Fluid density	ρ*	1	1
р	Fluid pressure	p*= x*p*g*	N	1
u	Soil displacement (continuum)	u*=x* ₈ *	Ν ^{2-α}	Ν
V	Velocity	$v^* = (x^* \varepsilon^* g^*)^{0.5}$	N ^{1-α/2}	1
ü	Acceleration	g*	1	N ⁻¹
t	Time (consolidation)	$t^* = \mu^* L^{*2} / G^*$	1	N ²
t	Time (creep)	t*	1	1
t	Time (dynamic)	$t^{*}=(x^{*}\epsilon^{*}/g^{*})^{0.5}$	N ^{1-α/2}	Ν
μ	Dynamic viscosity of fluid	$\mu^* = \rho^* (g^* / x^* \epsilon^*)^{0.5}$	N ^{((α/2)-1)}	N ⁻¹
K _f	Compressibility modulus of soil	$K_f^*=x^*\rho^*g^*/\varepsilon^*$	Nα	1

liquefact

WP4. T4.2 – Small scale centrifuge modelling

SCALE FACTORS (x*=	x _{prot} /x _{mc}	dynami	C PHE	NOMEN	A IN CEN	TRIFUGE
linear dimension: L* = N	accele	eration: a* = N	-1 1	frequency	:f*=N-1	
velocity: v* = 1	time (dynamic): t* =	N	time (diff	usion): t* =	N ²
stress: σ* =1	strair	: ε* = 1	f	luid dynai	nic viscosit	γ: μ*=N⁻¹
		Heartquake	cycles	f	Α	t
	0C=N	Prototype	10	1	0,1 m	10 s
a (g)		Model	10	50	2 mm	0,2 s
				and the second		
		كالملابة المتناسل وتالعان			HINN I PARA	
-0.2	. Mis. at A . at .	and a substance of the second s			Alternation of the second s	
-0.4			The state of the s			
0 20	40	60 8	0	100	120	140 t(s)
20 a (g) MODEL N	=50					
10				it is a starting to a		
O		id silve stilled politica i dilitika Nationalisti visi single stati i		and the second second		n n n n n n n n n n n n n n n n n n n
-10	· · •			in the standard state	1	
-20 +		1 5		<u>-</u>	2.5	+ (c) 2
0 0.5		C.1		2	2.3	(15) 3

WP4. T4.2 – Small scale centrifuge modelling

ISMGEO SEISMIC CENTRIFIGE

HYDRAULIC SHAKING TABLE INSTALLED ON THE RIGID ARM

one degree of freedom	ı
frequency	up to 500Hz
100 g centrifuge accel	eration
two 50 kN integrated	actuators
peak displacement	+/- 6.35 mm
peak velocity	0.9 m/s
moving mass	3.50 kN
max acceleration	50 g
full load acceleration .	16 g

INPUT RESPONCE SPECTRUM

LIQUEFACT REFERENCE PROTOTYPE

Reference case study for the centrifuge tests: ground conditions at the sites of San Carlo and Mirabello (where liquefaction occurred in 2012)

PROTOTYPE

- \checkmark sandy deposit 15 m deep
- \checkmark homogeneous (clean sand or sand with 12% of fine content)
- ✓ or with 1.5 m thick top cap of fine grained soil of lower permeability than the sand
- ✓ ground water table coincident with the soil surface

MODEL

- \checkmark geometrical scaling factor N = 50
- ✓ models subjected to a centrifugal acceleration of 50 g, imposed in correspondence of the base of the models

PHYSICAL MODELLING via SEISMIC CENTRIFUGE TESTS

(A) SEISMIC RESPONSE - LIQUEFACTION TRIGGERING

Soils: (1) Ticino sand (2) Pieve di Cento clean sand (3) Pieve di Cento sand with 12% Fine Content

miniaturised Cone Penetration Test

Soil Profiles: (1) Homogeneous sand (2) Two Layers (top with fine material + sand underneath)

Ground Motions:

GM 17, 23, 34, 31, 31+

(B) EFFECTIVNESS of MITIGATION TECHNIQUES

- 1. Vertical DRAINS
- 2. Horizontal DRAINS
- 3. Induced Partial Saturation (IPS)

First series of tests aimed at investigating the liquefaction triggering conditions (reference): reproduction in centrifuge of the liquefaction conditions of a sandy layer in homogeneous (M1) and two layers deposits (M2), in free field and underneath a model structure

Test number	Model type	Soil	Input signal	ID
1			GM17	M1_S1_GM17
2		Ticino Sand (S1)	GM34	M1_S1_GM34
3		(51)	GM31	M1_S1_GM31
4		Clean Pieve di Cento	GM17	M1_S2_GM17
5	M1		GM23	M1_S2_GM23
6	-	(52)	GM 34	M1_S2_GM34
7	- - -	Natural Pieve di Cento (12% fine) (\$3)	GM17	M1_S3_GM17
8			GM23	M1_S3_GM23
9			GM34	M1_S3_GM34
10		C 1	GM34	M2_S1_GM34
11	M2	51 -	GM31	M2_S1_GM31
12		S 3	GM34	M2_S3_GM34
13	M1 with structure	S1 -	GM31	M1F_S1_GM31
14			GM31+	M1F_S1_GM31+
15	M2 with structure	S 1	GM31+	M2F_S1_GM31+

Second series of tests: effectiveness of vertical and horizontal drains in homogeneous (M1) and two layers (M2) deposits, in free field and underneath a model structure

Test number	Model type	Soil	Drains type	Spacing	ID
16	N#1	Ticino Sand (S1)	- Vertical (VD)	5D	M1_S1_VD1_GM31
17	IVI 1			10D	M1_S1_VD2_GM31
20	240			5D	M2_S1_VD1_GM31
21	IV12			10D	M2_S1_VD2_GM31
24	M1F (with structure)			5D	M1F_S1_VD1_GM31+
26	M2F (with structure)			5D	M2F_S1_VD1_GM31+
18	M 1		Horizontal (HD)	5D	M1_S1_HD1_GM31
19	101 1			10D	M1_S1_HD2_GM31
22	MO			5D	M2_S1_HD1_GM31
23	1012			10D	M2_S1_HD2_GM31
25	M1F (with structure)			5D	M1F_S1_HD1_GM31+
27	M2F (with structure)			5D	M2F_S1_HD1_GM31+

Third series of tests: effectiveness of induced partial saturation (IPS) in homogeneous (M1) and two layers (M2) deposits, in free field and underneath a model structure

Test number	Model type	Soil	Number of injector	ID		
28		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	M1_S1_IPS1_GM31
29	- N/ 1		1	M1_S1_IPS1_GM31+		
30			M1_S1_IPS4_GM31			
31	_		4	M1_S1_IPS4_GM31+		
32			1	M2_S1_IPS1_GM31		
33	MO		1	M2_S1_IPS1_GM31+		
34	- IV12		4	M2_S1_IPS4_GM31		
35	_		4	M2_S1_IPS4_GM31+		
36	M1F (with structure)			4	M1F_S1_IPS4_GM31+	
37	M1F (with structure)		4	M1F_S1_IPS4_GM31++		

WP4. T4.2 – Small scale centrifuge modelling

lique ACT

Four different Ground Motions (corresponding to different seismic hazard levels) have been applied to the models, they have been analytically derived referring to the 2012 Emilia earthquake (northern Italy) by the partners of UNIPV

WP4. T4.2 – Small scale centrifuge modelling

In some cases to achieve liquefaction it was necessary to amplify GM31 GM31+ was counted as the fifth input motions of the test programme

EQUIVALENT SHEAR BEAM CONTAINER

MODEL SCHEME & MINIATURISED TRANSDUCERS

- ▼ Vertical displacement transducer
- Accelerometer
- Pore pressure transducer

Schemes of vertical and horizontal drains

Layout

cross section

Schemes of IPS

1 nozzle

4 nozzles

OBSERVED MECHANISMS

1. HOW THE EXCESS PORE PRESSURE INCREASES

2. LIQUEFACTION TRIGERRING UNDERNEATH STRUCTURE EXCESS PORE PRESSURE

2. LIQUEFACTION TRIGERRING UNDERNEATH STRUCTURE FOURIER AMPLITUDE RATIO a4/a_base

3. BEHAVIOUR OF THE STRUCTURE IN LIQUEFIED SOIL

FOURIER AMPLITUDE RATIO OF STR-TOP AND STR-B NORMALIZED TO a4 homogeneous soil

NO LIQUEFACTION

LIQUEFACTION

liquefACT

3. BEHAVIOUR OF THE STRUCTURE IN LIQUEFIED SOIL

STRUCTURE SETTLEMENTS homogeneous soil

input	S	Δs	tilt	Liquefaction
input	[mm]	[mm]	[°]	occurrence
GM31		20	0.2	
(0,15 g)	(g) 65	20	0.2	по
GM31+	720	104	1 1	VOS
(0,30 g)	720	164	1.4 yes	yes

GM31+ (0,30 g)

4. EFFECTIVNESS OF MITIGATION TECHNIQUES UNDER STRUCTURE EXCESS PORE PRESSURE

Time [s]

Time [s]

4. EFFECTIVNESS OF MITIGATION TECHNIQUES UNDER STRUCTURE FOURIER AMPLITUDE RATIO a4/a_base

NON treated liquefied soil

4. STRUCTURE BEHAVIOUR IN HOMOGENEOUS SOIL

liquefACT

- 1. The centrifuge tests highlighted the dependency of the pore pressure build-up on the number of cycles and shear stress applied when an irregular excitation is applied
- 2. The stress field due to the presence of structures reduces the liquefaction susceptibility
- 3. A liquefied layer acts as a damper on the structure but induces large settlement and rotation
- 4. If the soil doesn't liquefy settlement and rotation are smaller but the seismic actions transmitted to the structure are much higher
- 5. Vertical and horizontal drains reduces the pore-pressure build up, the excess pore pressure dissipation is faster; settlement and rotation of the structure are mitigated but the energy transmitted to the structure is larger
- 6. Physical modelling highlights mechanisms and validates conceptual models; the results allows parametric studies via numerical modelling simulations

"I più benedetti denari che si spendono da chi vuol fabbricare sono i modegli" Michelangelo Buonarroti (XVI century)

"The money best spent who wish to build is that spent to make models"