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MODELLING

"...almost everything that engineers do is
concerned with modelling" (Muir Wood 2004)

A model is an appropriate simplification of
reality and

engineering is fundamentally concerned with
identifying the key features to be accounted
in the design and to be modelled, to solve a
real problem
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MODELLING
> EMPIRICAL &) inductive models - empiricism

> PHYSICAL ) the key features of the real
problem are reproduced and

*Full scale tosted

*Small scale
> CONCEPTUAL =) deductive models - rationalism

* Theoretical
-Constitutive
*Semi-empirical
> NUMERICAL ™) from continuous to discrete
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PHYSICAL MODELS

Every experiment can be considered a physical model,
directed to confirm or develop theoretical/empirical
assumptions and understand mechanisms

Key features of actual engineering problem (prototype)
to be analysed are reproduced (model) and tested

Full scale models: employed when the behaviour of the
prototype is so dependent on the details of actual soil
fabric and structure

Small scale models: The key question is concerned with
establishing the validity of the models and ensuring a
secure way to extrapolate the observations made at
small scale to the prototype scale (scaling laws)



SIMILARLITY IN CENTRIFUGE
Scaling: X* = Xprototype/XmodeI = G* = Z* p* g*

in a accelerated field (centrifuge) a-g=®?R

p* =1 o*¥=1 MODEL with SAME STRESS FIELD
g*=1/N
P.C. Gravitational stress \—1

as PROTOTYPE

2= 2,,Rw’/g

Inertial stress
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Variable

Length

Soil density

Strain

Stresses (effective and total)
Stiffness

Fluid density

Fluid pressure

Soil displacement (continuum)
Velocity

Acceleration

Time (consolidation)

Time (creep)

Time (dynamic)

Dynamic viscosity of fluid
Compressibility modulus of soil
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velocity: v* =1

SCALE FACTORS (X*= X0/ Xp04)
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DYNAMEC PHENOMENA IN CENTRIFUGE

linear dimension: L* = N acceleration: a* = Nt

time (dynamic): +* = N

frequency: f* = N1
time (diffusion): +* = N2

stress: o* =1 strain: * = 1 fluid dynamic viscosity: p*=N-1
N=50 Heartquake| cycles f A t
- Prototype 10 1 0,1 m 10 s
a () Model 10 50 2 mm 0,2s
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0.2 - II il ]I M|
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BEAM CENTRIFUGE
CHARACTERISTICS
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| JLSMGED SELSMIC CENTRI

.....
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HYDRAULIC SHAKING TABLE
INSTALLED ON THE RIGID ARM

one degree of freedom

frequency ................ up to 500Hz

100 g centrifuge acceleration

two 50 kN integrated actuators

peak displacement....... +/- 6.35 mm

peak velocity ................. 0.9 m/s

moving mass ................. 3.50 kN

max acceleration ................ 50 g
full load acceleration ........... 16 g
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LIQUEFACT REFERENCE PROTOTYPE

Reference case study for the centrifuge tests:
ground conditions at the sites of San Carlo and Mirabello
(where liquefaction occurred in 2012)

PROTOTYPE

v' sandy deposit 15 m deep

v homogeneous (clean sand or sand with 12% of fine content)

v or with 1.5 m thick top cap of fine grained soil of lower
permeability than the sand

v' ground water table coincident with the soil surface

MODEL

v' geometrical scaling factor N = 50

v models subjected to a centrifugal acceleration of 50 g,
imposed in correspondence of the base of the models
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(A) SEISMIC RESPONSE - LIQUEFACTION TRIGGERING

(2) Pieve di Cento clean sand

(3) Pieve di Cento sand with 12% Fine Content

Soils: (1) Ticino sand
[ Penetration Test

miniaturised Cone ]

Soil Profiles: (1) Homogeneous sand
(2) Two Layers (top with fine material + sand underneath)

Ground Motions: GM 17, 23, 34, 31, 31+
(B) EFFECTIVNESS of MITIGATION TECHNIQUES

1. Vertical DRAINS
2. Horizontal DRAINS
3. Induced Partial Saturation (IPS)

mobeLs  CFREE FIELD STRUCTURE D

in HOMOGENEOUS SOIL & TWO LAYERS PROFILE
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First series of tests aimed at investigating the liquefaction triggering conditions (reference):
reproduction in centrifuge of the liquefaction conditions of a sandy layer in homogeneous (M1)
and two layers deposits (M2), in free field and underneath a model structure

Test number Model type Soil Input signal ID
1 N GM17 M1 S1 GM17
2 T'C'?é’l?a”d GM34 M1 S1_GM34
3 GM31 M1 S1 GM31
4 GM17 M1 S2 GM17
5 M1 Clean Pifgg)di Cento GM23 M1 S2 GM23
6 GM 34 M1 S2 GM34
7 Natural GM17 M1 S3 GML17
8 Pieve di Cento (12%fine) GM23 M1 S3 GM23
9 (S3) GM34 M1 S3 GM34
10 GM34 M2_S1 GM34
11 M2 >1 GM31 M2 _S1 GM31
12 S3 GM34 M2 S3 GM34
13 _ GM31 M1F S1 GM31
M1 with structure S1 —
14 GM31+ M1F _S1 GM31+
15 M2 with structure S1 GM31+ M2F S1 GM31+
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WP4. T4.2 — Small scale centrifuge modelling

Second series of tests: effectiveness of vertical and horizontal drains in homogeneous (M1)
and two layers (M2) deposits, in free field and underneath a model structure

Test number Model type Soil Drains type Spacing ID

16 1 5D M1_S1 VD1 GM31

17 10D  M1_S1 VD2 GM31

20 Vertical 5D MZ_S]._VD]._GMS].
M2

21 (VD) 10D M2_S1 VD2 GM31

24 M1F (with structure) 50 MIF_S1 VD1 GM31+

26 M2F (with structure) Ticino Sand 5D M2F S1 VD1 GM31+

18 M1 (S1) 5D M1 S1 HD1 GM31

19 10D M1 S1 HD2 GM31

22 Horizontal 5D M2_S1 HD1 GM31
M2

23 (HD) 10D M2_S1 HD2 GM31

25 M1F (with structure) 50  MIF_S1_HD1 GM31+

27 M2F (with structure) 5D M2F S1 HD1 GM31+
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Third series of tests: effectiveness of induced partial saturation (IPS) in homogeneous (M1)
and two layers (M2) deposits, in free field and underneath a model structure

Test number Model type Soil Number of injector ID
28 1 M1 S1 IPS1 GM31
29 1 M1 S1 IPS1 GM31+
30 M1 4 M1 S1 IPS4 GM31
31 4 M1 S1 IPS4 GM31+
32 Ticino Sand 1 M2 S1 IPS1 GM31
33 o (S1) 1 M2 S1 IPS1_GM31+
34 4 M2 _S1 IPS4 GM31
35 4 M2 S1 IPS4 GM31+
36 M1F (with structure) 4 M1F _S1 IPS4 GM31+
37 M1F (with structure) 4 M1F S1 IPS4 GM31++




Four different Ground Motions (corresponding to different seismic hazard Ie\;éIS)

have been applied to the models, they have been analytically derived referring to
the 2012 Emilia earthquake (northern Italy) by the partners of UNIPV
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In some cases to achieve liquefaction it was necessary to amplify GM31

GM31+ was counted as the fifth input motions of the test programme
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MODEL SCHEME & MINIATURISED TRANSDUCERS

v Vertical displacement transducer

= Accelerometer

e Pore pressure transducer
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Schemes of vertical and horizontal drains
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Schemes of IPS
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STRUCTURE MODEL FOR CENTRIFUGE TESTS

UNIVERSITY OF NAPOLI "FEDERICO II" (ltaly)
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1. HOW THE EXCESS PORE PRESSURE INCREASES

Excess Pore Pressure [kPa]
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2. LIQUEFACTION TRIGERRING UNDERNEATH STRUCTURE
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2. LIQUEFACTION TRIGERRING UNDERNEATH STRUCTURE
FOURIER AMPLITUDE RATIO a4/a _base
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3. BEHAVIOUR OF THE STRUCTURE IN LIQUEFIED SOIL

FOURIER AMPLITUDE RATIO OF STR-TOP AND STR-B NORMALIZED TO a4
homogeneous soil
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3. BEHAVIOUR OF THE STRUCTURE IN LIQUEFIED SOIL

STRUCTURE SETTLEMENTS
homogeneous soil

Differential Settlement [mm]
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4. EFFECTIVNESS OF MITIGATION TECHNIQUES UNDER STRUCTURE
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4. EFFECTIVNESS OF MITIGATION TECHNIQUES UNDER STRUCTURE
FOURIER AMPLITUDE RATIO a4/a_base

£ NON treated liquefied soil
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4. STRUCTURE BEHAVIOUR IN HOMOGENEOUS SOIL

input
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The centrifuge tests highlighted the dependency of the pore
pressure build-up on the number of cycles and shear stress applied
when an irregular excitation is applied

The stress field due to the presence of structures reduces the
liquefaction susceptibility

A liquefied layer acts as a damper on the structure but induces
large settlement and rotation

If the soil doesn't liquefy settlement and rotation are smaller but
the seismic actions transmitted to the structure are much higher

Vertical and horizontal drains reduces the pore-pressure build up,
the excess pore pressure dissipation is faster; settlement and
rotation of the structure are mitigated but the energy transmitted
to the structure is larger

Physical modelling highlights mechanisms and validates conceptual
models; the results allows parametric studies via numerical
modelling simulations






