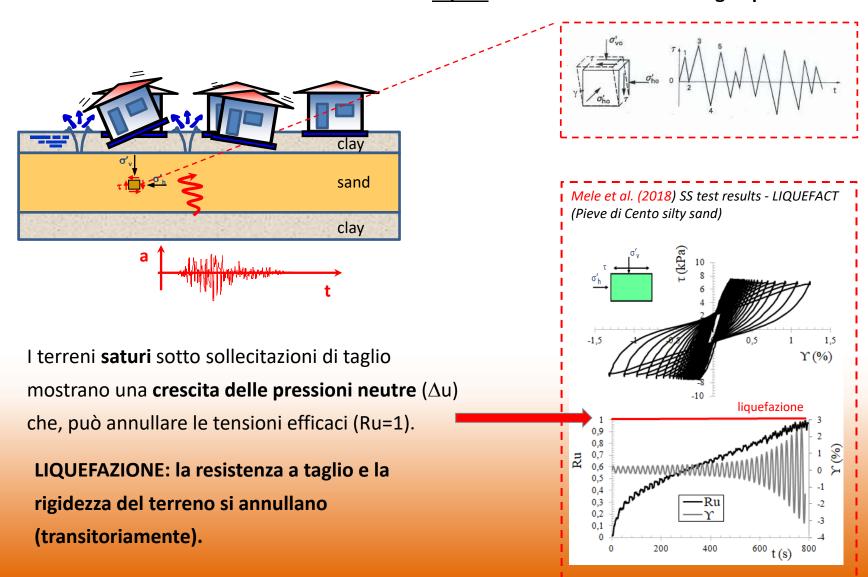


TECNICHE DI MITIGAZIONE DEI RISCHIO DA LIQUEFAZIONE

Stefania Lirer


Università degli Studi Guglielmo Marconi – Roma

Liquefazione ed instabilità dinamica dei terreni 20-09-2018

RemTech Expo 2018 (19, 20, 21 Settembre) Ferrara Fiere www.remtechexpo.com

RISPOSTA MECCANICA DEI TERRENI IN CONDIZIONI SISMICHE

Nelle zone più superficiali del sottosuolo (di interesse ingegneristico) le conseguenze di un evento sismico sono essenzialmente riconducibili ad una <u>rapida</u> sollecitazione ciclica di taglio puro.

LA LIQUEFAZIONE: effetti indotti

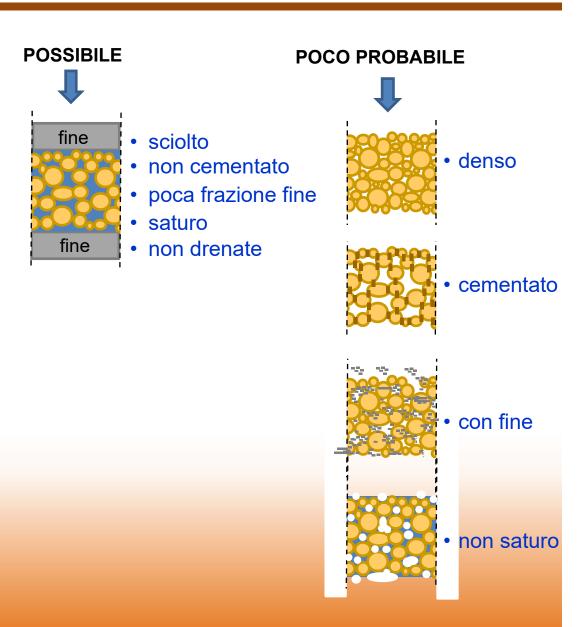
- •La liquefazione di manifesta (in **free-field**) con la formazione di vulcanelli si sabbia, rotture o spostamenti laterali del terreno.
- •In **presenza di manufatti** in superficie, si manifesta attraverso la perdita di capacità portante e lo sviluppo di importanti cedimenti.

Niigata, Giappone 1964

Kobe, Giappone 1995

Kocaeli, Turchia 1999

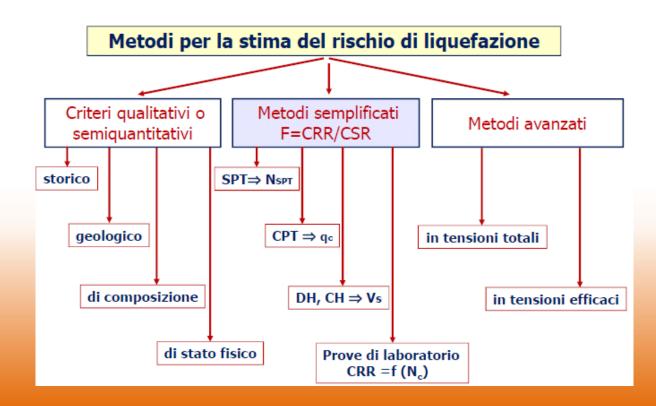
Christchurch, Nuova Zelanda 2011


TERRENI POTENZIALMENTE LIQUEFACIBILI

FATTORI PREDISPONENTI

- ✓ Acqua e terreno
 - Densità
 - Cementazione
 - Granulometria
 - Saturazione
 - Condizioni al contorno
- ✓ Stato tensionale
 - Bassi stati tensionali iniziali (depositi superficiali)

FATTORE SCATENANTE


Eventi sismici con M>5

ANALISI DELLA SUSCETTIBILITA' alla LIQUEFAZIONE (NTC 2008)

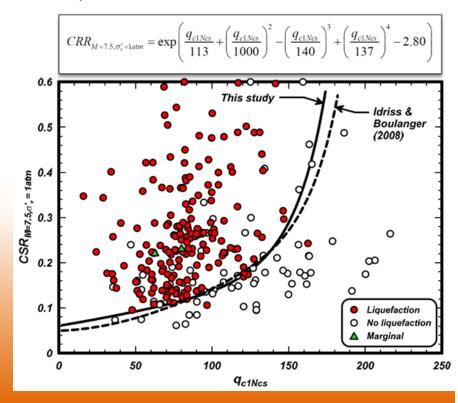
7.11.3.4 Stabilità nei confronti della liquefazione

Il sito presso il quale è ubicato il manufatto deve essere stabile nei confronti della liquefazione, intendendo con tale termine quei fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche in terreni saturi, prevalentemente sabbiosi, sollecitati da azioni cicliche e dinamiche che agiscono in condizioni non drenate.

ANALISI DELLA SUSCETTIBILITA' alla LIQUEFAZIONE

Con **metodi semi-empirici**, la **sicurezza alla liquefazione** viene valutata localmente, a diverse profondità, calcolando il rapporto tra la resistenza ciclica alla Liquefazione ($CRR = \tau_f/\sigma'_{v0}$) e la sollecitazione ciclica indotta dall'azione sismica ($CSR = \tau_{media}/\sigma'_{v0}$)

$$FS_{liquef}(z) = \frac{CRR}{CSR} = \frac{resistenza}{sollecitazione}$$


CSR è funzione della massima accelerazione in superficie e della magnitudo M del sisma

(può essere determinata direttamente, da analisi di risposta sismica locale, o indirettamente da relazioni empiriche, in funzione dei caratteri del moto sismico atteso al sito)

Seed & Idriss, 1971

$$CSR = \frac{\tau_{eq}}{\sigma'_{v0}} = 0.65 \frac{a_{\text{max}}}{g} \frac{\sigma_{v0}}{\sigma'_{v0}} r_d$$

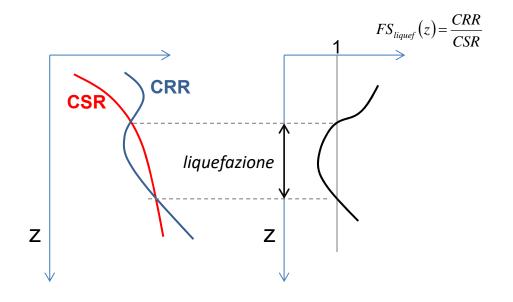
CRR si ricava da abachi empirici che la legano a risultati di <u>prove in sito</u> o da prove di Laboratorio

EFFETTI DELLA LIQUEFAZIONE SUL DEPOSITO

Fenomeni **locali di liquefazione** possono creare gravi danni in funzione di :

- spessore ed estensione dello strato liquefacibile
- spessori di coperture non liquefacibili
- pendenza del terreno
- vicinanza con la superficie libera

Liquefaction potential index IL (lwasaky, 1978)


$$I_L = \int_0^{20} F_L(z) w(z) dz$$

Liquefaction severity index Ls (Sonde & Gokceoglu, 2005)

$$L_S = \int_0^{20} P_{\rm L}(z) W(z) dz$$

(Van Ballegooy et al. 2014)

$$LSN = 1000 \int \frac{\varepsilon_{v}}{z} dz$$

E' necessario calcolare un **indice sintetico** che quantifichi il **Rischio di Liquefazione** dell'intera verticale

Valore di I _L	Rischio	
I _L =0	molto basso	
0 <i<sub>L≤5</i<sub>	basso	
5 <i<sub>L≤15</i<sub>	alto	
15 <i<sub>L</i<sub>	molto alto	

MITIGAZIONE DEL RISCHIO DI LIQUEFAZIONE

NTC208: Se il terreno risulta suscettibile di liquefazione e gli effetti conseguenti appaiono tali da influire sulle condizioni di stabilità di pendii o manufatti, occorre procedere ad interventi di consolidamento del terreno e/o trasferire il carico a strati di terreno non suscettibili di liquefazione.

Possibili interventi (<u>riduzione del rischio R=H·D</u>) contro la liquefazione possono ridurre:

TECNICHE DI TRATTAMENTO DEI TERRENI

Ground Improvement

terreno

acdna

FATTORI PREDISPONENTI

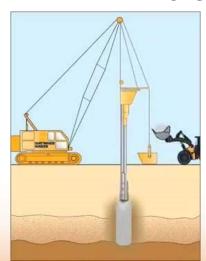
Sabbie sciolte

Prive di cementazione

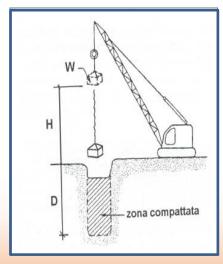
Saturazione

• Condizioni non drenate

Classification	Liquefaction mitigation methods
Soil reinforcement	Soil replacement
	Soil densification: sand compaction pile, vibration compaction, dynamic compaction, blast compaction, compaction grouting
	Bonding of grains: permeation grouting, splitting grouting, jet grouting, deep mixing, pile method, biocementation
Saturation degree reduction	Lowering of groundwater table, air injection, biogas
Drainage	Gravel pile method, dissipation using screen pipes

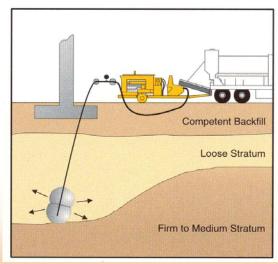

INTERVENTI PASSIVI: Intervengono quando l'evento si manifesta

INTERVENTI ATTIVI: Modificano lo stato del terreno, migliorando le loro proprietà meccaniche

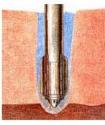

TECNICHE DI COMPATTAZIONE PROFONDE

Sono tecniche con le quali si esplicano delle azioni dinamiche o statiche, al piano campagna o in profondità, per addensare il terreno fino a notevole profondità (molti metri). Le tecniche vanno scelte in funzione della profondità di trattamento e dell'estensione areale del trattamento.

Azione dinamica



Vibroflottazione

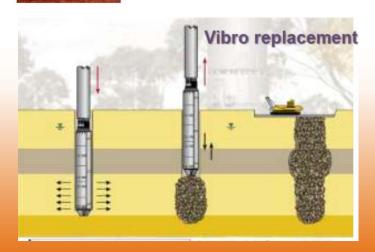

Heavy tamping

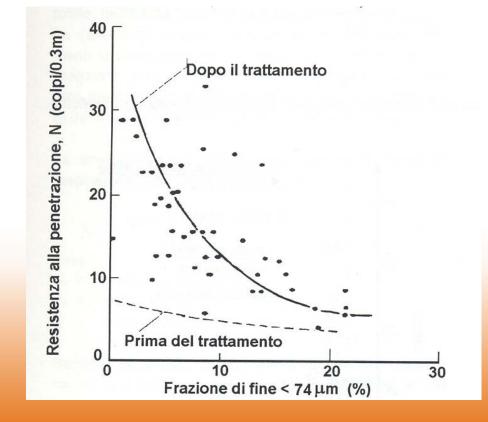
Azione statica



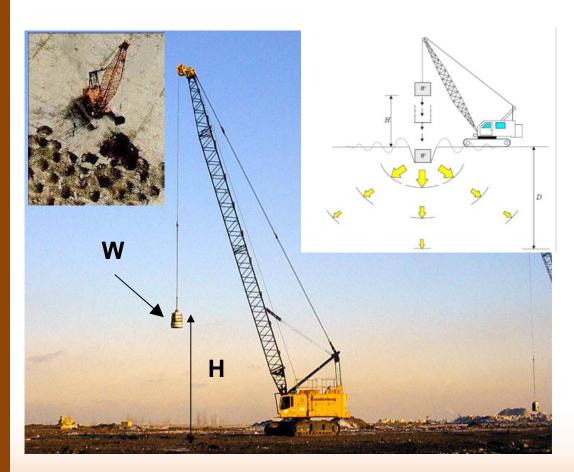
Compaction grouting

ADDENSAMENTO PER VIBRAZIONE


Inserimento (1m/min) di una **sonda vibrante** nel terreno (L=1.8m, D=0.4m) con contemporaneo getto d'acqua dal fondo della vibroflotta.



Arrivati in profondità, il getto inferiore viene sospeso, e la sonda viene lentamente sollevata, introducendo sabbia o ghiaia dal piano campagna (*Vibro-compaction*) o alla base della sonda (*Vibro-replacement*).



Profondità max di trattamento =30÷40 m

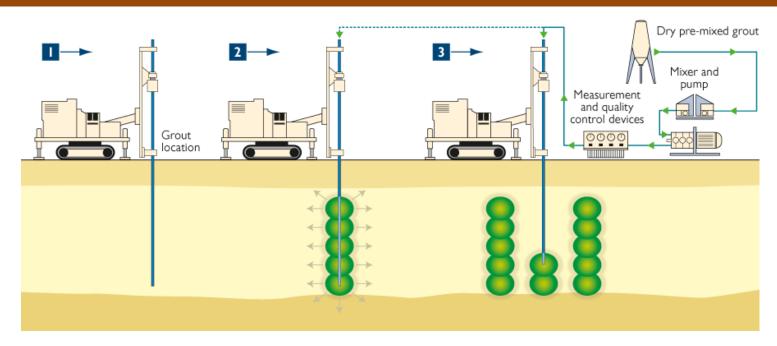
COMPATTAZIONE DINAMICA

Applicazione di carichi dinamici (impatti) al piano campagna con addensamento di un volume di terreno.

Typical Grid Layout of Dynamic Compaction

Energia per unità di superficie (E) :

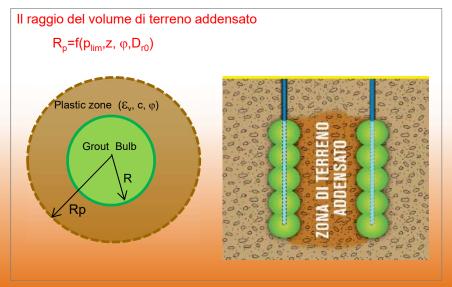
$$E = \frac{E_1 \cdot n}{A}$$


E₁ = energia del singolo impatto

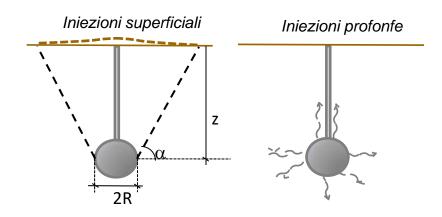
n = numero di impatti

A = area trattata

Profondità del trattamento (m)	E (kN·m/m²)
< 6	1700-2200
6-8	2700-3200


COMPATTAZIONE STATICA

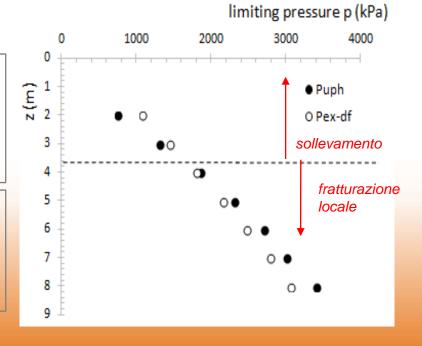
Iniezioni per spostamento: compaction


grouting: una malta viscosa viene immessa nel terreno con la finalità di creare una inclusione atta a costipare e deformare il terreno nel suo intorno

La miscela deve essere iniettata a bassa pressione, evitando di permeare tra i pori o creare fratture (p<p_{lim}).

INCREMENTO DELLA DENSITA'

COMPATTAZIONE STATICA



- Iniezioni superficiali: la pressione di iniezione è governata da fenomeni di sollevamneto del piano campagna (p_{lim,uph})
- Iniezioni profonde: la pressione di iniezione è governata da deformazioni locali eccessive o fratturazione del terreno (p_{lim,ex-df})

$$p_{\lim \mu h} = \gamma \cdot z \cdot \frac{\left(\frac{z}{R}\right)^2 + 3\left(\frac{z}{R}\right) \tan \alpha + 3\tan^2 \alpha}{3\tan^2 \alpha} \cdot \left(1 + \frac{2(1 - \sin \varphi) \cdot \cos(180 - \alpha - \varphi)}{\cos \varphi \cdot \cos \alpha}\right)$$

Expanding spherical cavity in an isotropic elasticplastic continuum (El-Kelesh et al., 2001)

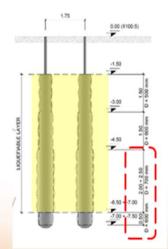
$$\frac{R_p}{R} = \sqrt[3]{\frac{I_r}{1 + I_r \cdot \varepsilon_v}} \qquad I_r = \frac{G}{c + \sigma' \cdot \tan \varphi}$$

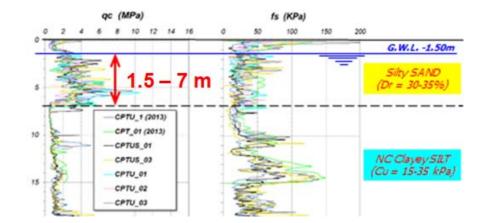
COMPATTAZIONE STATICA

Realizzazione di un edificio in Cento (FE-Italy) - Trevi

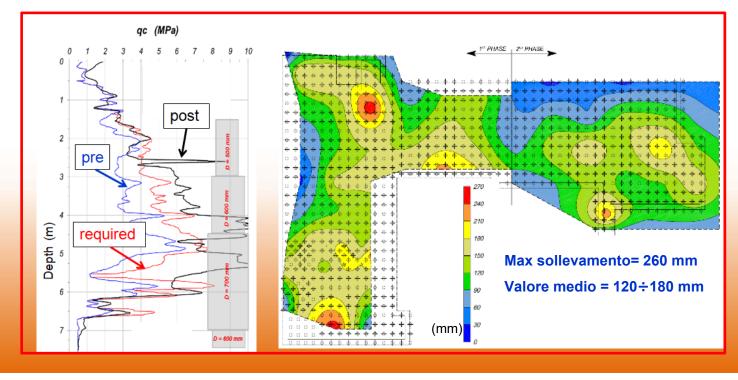
Adopted Geometry

Area $_{TOT}$ = 2600 m²

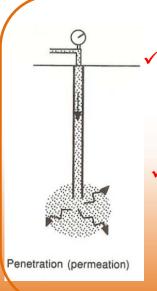

N°_{COLUMNS} = 865

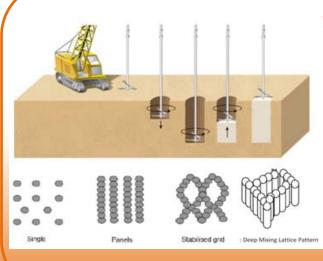

 $V_{TOT,CLS} = 1120 \text{ m}^3$

Square Pattern


Spacing 1.75 m Diameter = 500÷700 mm

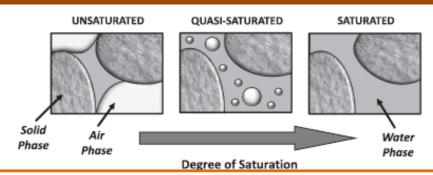
Ac / Ai = 9.1%



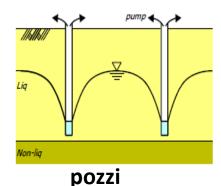

INIEZIONI

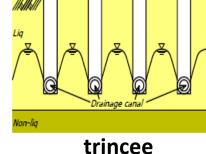
Immissione di una miscela cementante sotto l'azione di pressione esterna o attraverso mescolamento meccanico

- 1. Iniezioni per permeazione: (permeation grouting : una miscela consolidante viene iniettata nei pori a bassa pressione).
- 2. Iniezioni con rimaneggiamento: (<u>Jet grouting</u>: il fluido cementante viene mescolato al terreno dopo che quest'ultimo è stato eroso dall'azione disgregatrice del fluido stesso. <u>Deep mixing</u>: uno o più agenti cementanti (calce, cemento o gesso) vengono mescolati al terreno anche a secco e senza asportazione di terreno).



- . ✓ Pro: tecnologia adatta ad ambienti edificati
 - ✓ Contro: difficoltà nel definire l'estensione del trattamento




- Pro: usata per parzializzare volumi di terreno, effetti benefici permanenti
- ✓ <u>Contro</u>: interazione indesiderata con il costruito adiacente

DESATURAZIONE

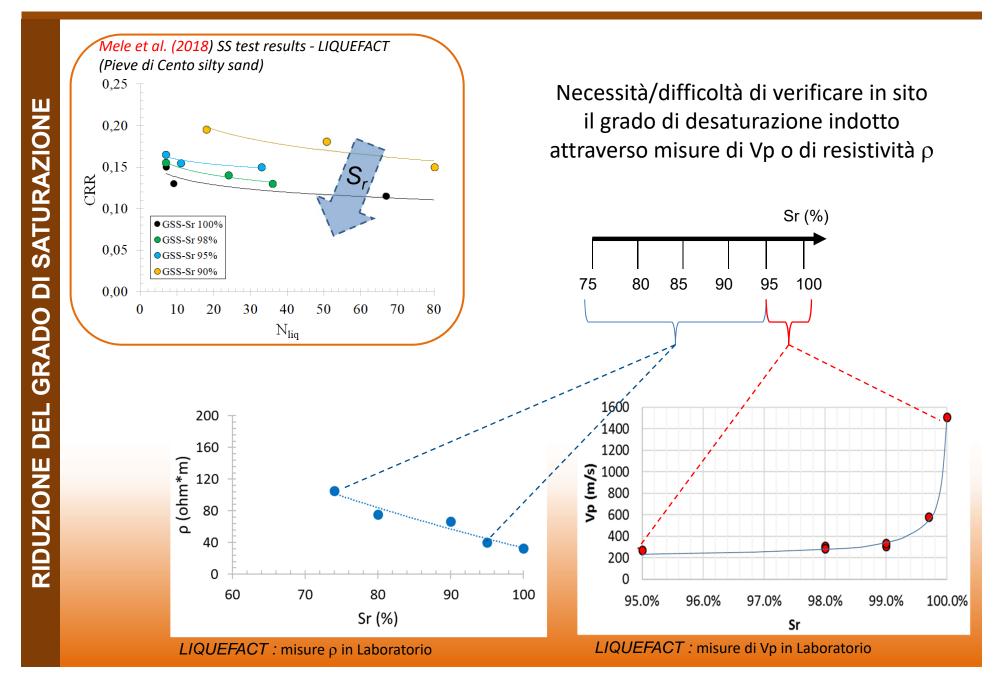
Elevata Desaturazione

<u>Pro</u>: estensione del trattamento facile da determinare, molto efficace, permanente

Contro: elevati cedimenti

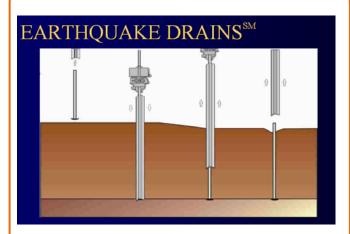
Bassa Desaturazione IPS

- Immissione di aria
- Elettrolisi
- Iniezioni miscele chimiche
- Metabolismo di microrganismi



Pro: poca deformazione del terreno

Contro: difficoltà della misura del Sr indotto, efficacia nel tempo?


BASSA DESATURAZIONE

DRENAGGI

• Inserimento di dreni/pali $\,$ in ghiaia o in altro materiale artificiale, al fine di facilitare la dissipazione delle Δu durante l'evento sismico

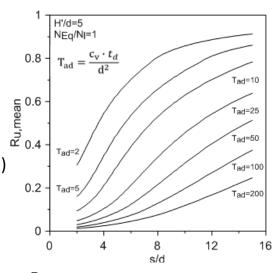
Dreni verticali VD

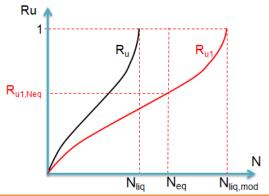
Dreni orizzontali HD

PROGETTO HD (LIQUEFACT)

Inputs:

- seismic input (t_d, N_{eq})
- soil properties
- number of cycles to liq (N_{liq})
- diameter of drains (d)


Goal:


• Maximum tolerable value of $R_{u1,Neq}$

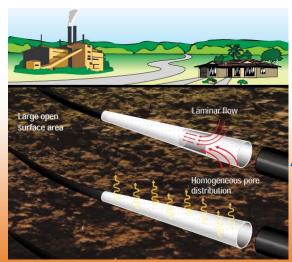
Design choice:

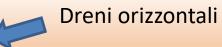
- Spacing among drains
- Number of rows
- Depth of rows

MITIGAZIONE DEL RISCHIO DI LIQUEFAZIONE

Campo prova di Pieve di Cento (LIQUEFACT)

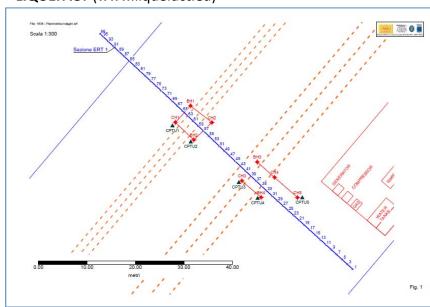
LIQUEFACT (www.liquefact.eu)


PRINCIPALI OBIETTIVI



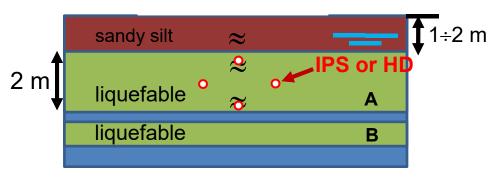
- Implementare una mappa di rischio da liquefazione, su scala europea
- Sviluppare una metodologia per la valutazione localizzata del potenziale di liquefazione
- Sviluppare nuove metodologie semplificate per la valutazione della vulnerabilità di strutture e infrastrutture
- Definire tecniche di mitigazione per ridurre il potenziale di liquefazione

Tecnica di mitigazione	Lab UniNa	Centrifuga Ismgeo	Sito Trevi
Addensamento	Х		
Aggiunta di fine (Laponite)	Х		
Dreni orizzontali (HD)		Х	Х
Parziale desaturazione (IPS)	Х	Х	X



MITIGAZIONE DEL RISCHIO DI LIQUEFAZIONE

Campo prova di Pieve di Cento (LIQUEFACT)


LIQUEFACT (www.liquefact.eu)

Campagna di indagini effettuate pre-TEST:

- Sondaggi a carotaggio continuo
- Sondaggi a distruzione
- CPTu
- Prelievo campioni indisturbati
- Prove Cross-hole
- Tomografia elettrica da superficie
- Prove meccaniche di laboratorio

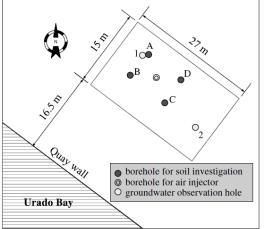
Test site cross section

Obiettivi del campo prova:

- Indurre sovrappressioni neutre nello strato A con lo shaker (TEST 1);
- Ripetere la prova usando due tecniche di mitigazione (dreni orizzontali HD e IPS) finalizzate a ridurre le sovrappressioni neutre indotte dallo shaker (HD and IPS, TEST 2 and TEST 3).
- TEST 1,2,3 19/22 ottobre 2018

GRAZIE PER L'ATTENZIONE,

Dott.Ing. Stefania Lirer


Università degli Studi Guglielmo Marconi - Roma

Facoltà di Scienze e Tecnologie Applicate

s.lirer@unimarconi.it

BASSA DESATURAZIONE

Campo prova IPS (Okamura et al., 2011)

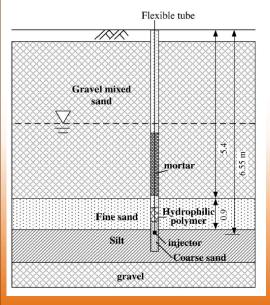
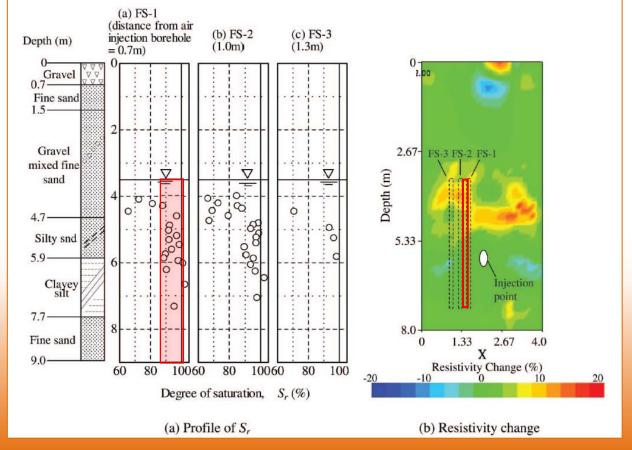



Table 1. Summary of Air-Injection Test Condition

			Maximum flow rate $(10^{-3} \text{ m}^3/\text{min})$	
I-1	2	34.7	0.71	2.8
I-2	24	43.9	1.81	1.8
I-3	7	47.4	47.4	0.87
I-4	7	92.0	92.0	3.4

