

Horizon 2020 European Union funding for Research & Innovation

EARTHQUAKE INDUCED LIQUEFACTION RISK: HOLISTIC ASSESSMENT AND MITIGATION

Wednesday 20th June 2018 - 11:30-13:00

ROOM: CR2 (building M2 - Thessaloniki Concert Hall/16ECEE Conference Venue)

Liquefaction vulnerability of structures and infrastructures on liquefiable deposits

Xavier Romão, Maxim Millen

UNIVERSITY OF PORTO

THESSALONIKI – June 20th, 2018

Engineering Demand Parameters (EDPs) and modelling framework

Dynamic performance EDPs:

Maximum chord rotation θ , shear force, V* and interstorey drift $\theta_{ss,p}$

Residual performance EDPs:

Maximum residual interstorey drift $\theta_{ss,r}$ and residual rotation of the foundation $\beta_{f,r}$

QUANTIFYING BUILDING PERFORMANCE Engineering Demand Parameters (EDPs) and modelling framework

THESSALONIKI – June 20th, 2018

liquefACT

Engineering Demand Parameters (EDPs) and modelling framework

QUANTIFYING BUILDING PERFORMANCE Engineering Demand Parameters (EDPs) and modelling framework

iquefact

QUANTIFYING BUILDING PERFORMANCE additional modifications to the modelling/analysis framework

Dynamic analyses of the OpenSees model involve:

Ground motion filtered by the selected soil profile Time series of imposed displacements at the supports acting simultaneously with the ground motion (determined from soils spring settlement & expected settlement) Reduction of the stiffness of soil springs K_f after t_{liq} to reflect the stiffness evolution

QUANTIFYING BUILDING PERFORMANCE analysing the performance of the SFSI spring model

Performance test: in a test frame, at a certain time instant of the dynamic analysis, reduce the stiffness of the SSI spring model to 10% of the initial value in 10 steps at a certain time instant, using the 2 models (Steel01 and SteelMP)

Green – response before changing the stiffness Red – response when stiffness is changing Blue – response after changing the stiffness Outside obvious differences between the 2 models, the response seems ok in both cases, but a closer look reveals some issues

QUANTIFYING BUILDING PERFORMANCE analysing the performance of the SFSI spring model

Green – response before changing the stiffness Red – response when stiffness is changing Blue – response after changing the stiffness

The **response of SteelMP is inconsistent**. It is clear when we compare the change from the green to the red curve in both models: when the stiffness change starts in SteelMP, there is a strange jump in the response; **but the response is able to get back on track after the stiffness change is over**.

However, at that point, the deformation of the spring is smaller with SteelMP than with Steel01 and this difference in the deformation level is maintained until the end of the analysis.

QUANTIFYING BUILDING PERFORMANCE analysing the performance of the SFSI spring model

Additional findings:

- Increasing the number of timesteps to achieve the desired stiffness reduction has no influence in the strange behaviour of SteelMP
- The strange behaviour of SteelMP only occurs if the stiffness change is performed when the spring is unloading
- The strange behaviour of SteelMP only occurs if the stiffness change is performed after the spring yields

QUANTIFYING BUILDING PERFORMANCE further sensitivity analyses

Several benchmark structures are currently being analysed to assess differences in the earthquake response for different conditions:

- Fixed supports vs supports with SFSI
- Normal ground motions vs filtered ground motions
- Uniform SFSI vs non-uniform SFSI
- Different models for SFSI

SIMULATING PROBABILISTC BUILDING PERFORMANCE

Probabilistic building performance will account for:

- record-to-record variability (cloud analysis)
- uncertainty in the properties of the SFSI soil spring and t_{lig} (50 samples)
- building-to-building variability (100 building samples)

Development of a building model generator for creating multiple models of a certain building class

The building classes corresponds to gravity load designed RC frames with 1 to 5 storeys and 2 to 5 bays

To establish fragility curves, performance levels are defined by:

- several maximum interstorey drift limits representing different levels of damage
- global collapse using one drift limit and accounting for "numerical" failure
- chord rotation and shear capacities (accounting for local failure; included in collapse cases)
- maximum residual interstorey drift limit
- reparability limits in terms of maximum foundation rotation (local and global)

LOSS QUANTIFICATION

\$

Fragility curves related with interstorey drift sensitive damage

Expected loss at a certain IM level, due to drift-related damage, given that the structure is repairable and didn't collapse

Fragility curve for collapse cases $p(C, IM_i)$ $E(L | C, IM_i) = 1$

THESSALONIKI – June 20th, 2018

Fragility curve for residual drift (defines the limit of reparability and implies demolition)

LOSS QUANTIFICATION

Super structure-related loss

$$E_{1}(L \mid IM_{i}) = E(L_{\theta} \mid \overline{C} \cap R, IM_{i}) \times [1 - p(D \mid \overline{C}, IM_{i})] \times [1 - p(C \mid IM_{i})] + p(D \mid \overline{C}, IM_{i}) \times [1 - p(C \mid IM_{i})] \times [1 + p(C \mid IM_{i})]$$

Loss = Repair + Demolition + Collapse

Foundation-related loss

$$E_{2}\left(L \mid IM_{i}\right) = E\left(L_{\beta_{f}} \mid \overline{C} \cap R, IM_{i}\right)\left[1 - p\left(D \mid \overline{C}, IM_{i}\right)\right] \times \left[1 - p\left(C \mid IM_{i}\right)\right]$$

Total expected loss

$$E(L \mid IM_i) = \min(E_1(L \mid IM_i) + E_2(L \mid IM_i); 1)$$