

Horizon 2020 European Union funding for Research & Innovation

EARTHQUAKE INDUCED LIQUEFACTION RISK: HOLISTIC ASSESSMENT AND MITIGATION

Wednesday 20th June 2018 - 11:30-13:00

ROOM: CR2 (building M2 - Thessaloniki Concert Hall/16ECEE Conference Venue)

Liquefaction vulnerability of structures and infrastructures on liquefiable deposits

Maxim Millen, Xavier Romão

UNIVERSITY OF PORTO

OUTLINE

- Goal
- Equivalent soil profiles
- Procedure to assess performance
- Moment-rotation response
- From soil to structure (Xavier Romão to continue)

Quantifying performance of buildings on liquefiable soil

Quantifying liquefaction as a hazard

Issues with single value definitions

CRR profile for LSN = 20 @ PGA = 0.15g

What level of differential settlement could be expected in the structure?

What level of shaking could be expected in the structure?

What level of soil-foundation stiffness could be expected?

- Difficult to validate for a single building as the soil profile is not uniquely defined
- Strong dependence on ground shaking
- Liquefaction can be beneficial and detrimental to performance

Why use an equivalent soil profile?

Practical reasons

- Fasier to understand the mechanics
- More intuitive
- Faster (less parameters)
- Connects with existing literature
 - Dimitriadi et al. (2017)
 - Bray and Macedo (2017)
 - Karamitros et al. (2013)
- Some level of equivalent layering has to happen.

Physical basis

Connects to wider liquefaction research

Soil profile classification for liquefaction

Strength - Size - Position

		Weak	Mid.	Strong	Resist
Large	Shallow	WLS	MLS	SLX	RXX
	Mid.	WLM	MLM		
	Deep	WLD	MLD		
Midsize	Shallow	WMS	MMS	SMX	
	Mid.	WMM	MMM		
	Deep	WMD	MMD		
Thin	Shallow	WTS	MTS	STX	
	Mid.	WTM	MTM		
	Deep	WTD	MTD		

Procedure to assess loss

Individual study of each aspect

Extended study:Influence of liquefaction on non-linear foundation rotation

In many cases moment capacity is largely unaffected by liquefaction, but stiffness changes

Time history based approach

Outputs from FLAC to Opensees

