

Horizon 2020 European Union funding for Research & Innovation





## ASSESSMENT AND MITIGATION OF LIQUEFACTION POTENTIAL ACROSS EUROPE

A holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters

## Ground improvement to mitigate liquefaction potential

#### Alessandro Flora,

E. Bilotta, A. Chiaradonna, G. Fasano, S. Lirer, L. Mele, V. Nappa

UNIVERSITY OF NAPOLI FEDERICO II







#### **SUMMARY OF PRESENTATION**

1. Liquefaction

2. Two innovative mitigation techniques

3. Pieve di Cento (Italy) field trial design





#### WHAT IS LIQUEFACTION?

It is a temporary loss of shear strength and stiffness of a saturated loose sandy soil in response to an applied stress, usually earthquake shaking.



$$R_{u} = \frac{\Delta u}{\sigma'_{o}} \to 1 \quad \Longrightarrow \quad \begin{cases} \tau_{f} = \sigma' \tan \phi' = (\sigma_{o} - \Delta u) \tan \phi' \to 0 \\ G = G(p') \to 0 \end{cases}$$



#### The consequences on the built environment can be catastrophic









### WHY DOES LIQUEFACTION HAPPEN?

#### PREDISPOSING FACTORS

- ✓ Soil and water
  - Density
  - Cementation
  - Grading
  - Saturation
  - Drainage
- ✓ Stress state
  - Low initial effective stress (shallow soils)

#### TRIGGERING FACTOR

- ✓ Earthquake
  - High ground acceleration

#### **POSSIBLE**



#### **UNLIKELY TO HAPPEN**



with fines



Some of the possible goals of ground improvement













#### Goals of the field trial:

- Induce relevant pore pressure build up in layer A with a shaker (TEST 1);
- Repeat shaking using mitigation techniques (HD and IPS, TEST 2 and TEST 3) to reduce pore pressure buildup.

The technologies to be used are not conventional. Their design is one of the main geotechnical challanges of LIQUEFACT





## **FIELD TRIAL: the technology**

TREVI (LIQUEFACT partner) will take care of the installation of the subhorizontal drains









# INDUCED PARTIAL SATURATION: gas bubbles in the water Design

A possible way is to use the theoretical formulation proposed by Mele et al. (2018), to express the value of  $CRR_{un}$  of the unsaturated soil as a function of the volumetric energy needed to liquefy



Once CRR=CRR(N) is known for  $S_r=1$ , with this approach it is possible to plot  $CRR_{un}=CRR(N,S_r)$  for any value of  $S_r$  just by calculating the corresponding value of  $E_{v,liq}$ 





## **INDUCED PARTIAL SATURATION:** gas bubbles in the water



The good fitting allows to draw design charts of cyclic resitance curves at different values of S<sub>r</sub> just knowing the saturated cyclic resistance curve



#### **HORIZONTAL DRAINS**

## Design



$$\frac{k}{\gamma_{w}} \left( \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right) = m_{v} \left( \frac{\partial u}{\partial t} - \frac{\partial u_{g}}{\partial N} \frac{\partial N}{\partial t} \right)$$



#### Bouckovalas et al. (2009)

$$\frac{\partial u_g}{\partial N} = \frac{\sigma_0'}{\pi A N_l} \frac{1}{\left(\frac{t}{t_d} \frac{N_{eq}}{N_l}\right)^{1 - \frac{1}{2A}} \cos\left(\frac{\pi}{2} r_u\right)}$$

$$\frac{\partial N}{\partial t} = \frac{N_{eq}}{t_d};$$





#### **HORIZONTAL DRAINS**

## Design

#### Inputs:

- seismic input (t<sub>d</sub>, N<sub>eq</sub>)
- soil properties
- number of cycles to liq (N<sub>liq</sub>)
- diameter of drains (d)
- geometry (H')

#### Goal:

 Maximum tolerable value of R<sub>u.mean</sub> or R<sub>u.max</sub>

#### **Design choice:**

- Spacing among drains
- In case, iterate (change H')





$$T_{ad} = \frac{c_v \cdot t_d}{d^2}$$





#### **DESIGN OF GROUND IMPROVEMENT**

- Evaluate action (CSR, N<sub>ea</sub>)
- Evaluate safety conditions (CRR,  $N_{liq}$ )
- If unsatisfactory (CSR>CRR, N<sub>liq</sub><N<sub>eq</sub>), improve resistance enough to allow action (CSR, N<sub>eq</sub>) with the desired safety margin



Design of ground improvement to improve resistance (step 3)



Increase  $N_{liq}$  to  $N_{liq,mod}$  (approach 1) Increase CRR to CRR<sub>mod</sub> (approach 2)





## **DESIGN APPROACH 1** $(N_{liq} \rightarrow N_{liq,mod})$

**Horizontal drains (HD)** 

- 1. Assume a limit value  $R_{u1,Neq}$  (considering the critical mechanism, e.g. bearing capacity)
- Select drains, spacing, depth, etc. using the proposed charts









## DESIGN APPROACH 1 $(N_{liq} \rightarrow N_{liq,mod})$

**Induced Partial Saturation (IPS)** 

- Assume a limit value R<sub>u1,Neq</sub> (considering the critical mechanism, e.g. bearing capacity)

   (1)
- 2. Calculate  $N_{liq,mod}$  from eq. (1):

$$R_{\rm u1,N_{\rm eq}} = \frac{2}{\pi} \arcsin \left( \frac{N_{\rm eq}}{N_{\rm liq,mod}} \right)^{1/2\beta}$$

3. Select desired saturation degree as  $S_r=S_r(N_{lig,mod}, CSR)$ 







## **DESIGN APPROACH 2** (CRR $\Rightarrow$ CRR<sub>mod</sub>)

**Induced Partial Saturation (IPS)** 

- 1. Assume a safety factor FS<sub>lig</sub> on CSR (against liquefaction)
- 2. Calculate CRR<sub>mod</sub> as:

$$CRR_{mod} = FS_{liq} \cdot CSR$$

3. Select the needed value of S<sub>r</sub>







## **APPLICATION OF DESIGN APPROACHES TO FIELD TEST - 1/2**

#### For a given shaking input at ground level

1. With reference to a bearing capacity preservation design (approach 1):

| Factor of safety FS <sub>bc</sub> | IPS: S <sub>r,fin</sub> (%) | HD, s (m) |
|-----------------------------------|-----------------------------|-----------|
| 1.00                              | 94                          | 1.05      |
| 1.50                              | 93                          | 1.00      |
| 1.90                              | 91                          | 0.96      |

2. With reference to a design having the goal to avoid liquefaction (approach 2):

| Factor of safety FS <sub>liq</sub> | IPS: S <sub>r,fin</sub> (%) |
|------------------------------------|-----------------------------|
| 1.00                               | 94                          |
| 1.25                               | 90                          |

We will go for  $S_{r,fin}$ =90% (IPS) and  $s\approx1$  m (HD)





## **APPLICATION OF DESIGN APPROACHES TO FIELD TEST - 2/2**

#### For a given shaking input at ground level

#### **INDUCED PARTIAL SATURATION** – Need to check S<sub>r</sub> on site



For very high values of S<sub>r</sub> (>95%) V<sub>p</sub> measurements are very sensitive to S<sub>r</sub>

For lower values of  $S_r$  (<95%) resistivity measurements are more sensitive to  $S_r$