

Horizon 2020 European Union funding for Research & Innovation

EARTHQUAKE INDUCED LIQUEFACTION RISK: HOLISTIC ASSESSMENT AND MITIGATION

Wednesday 20th June 2018 - 11:30-13:00

ROOM: CR2 (building M2 - Thessaloniki Concert Hall/16ECEE Conference Venue)

Empirical damage and liquefaction fragility curves

Andrea Prota, Alessandro Flora, <u>Marco Di Ludovico</u>, Emilio Bilotta, Anna Chiaradonna, Pietro Caputo

UNIVERSITY OF NAPOLI FEDERICO II

DATA COLLECTION ON LIQUEFACTION INDUCED DAMAGE

DIREZIONE GENERALE CURA DEL TERRITORIO E DELL'AMBIENTE

ismico e dei suoli

servizio geologico

UniversiTà degli STudi di Napoli FEDERICO II

Agenzia regionale per la Ricostruzione Sisma 2012

DATA COLLECTION ON DAMAGED BUILDINGS

2017 - Scientific agreement

(Municipality of Mirabello, San Carlo (Sant'Agostino), Bondeno, Cavezzo, Cento, and Pieve di Cento)

DATA BY USABILITY SURVEY FORMS AND **PRACTITIONERS' REPORT**

(Level and extent of damage on structural and non structural memebers, photo reports of damage, destructive and non destructive tests on materials and ground, etc.)

Liquefied Ground Buildings (LG): 116 masonry buildings

with public grant for liquefaction induced damage

Unliquefied Ground Buildings (UG): 993 masonry buildings with public grant for seismic inertial forces induced damage

I. ANALYSIS OF LIQUEFCTION INDUCED DAMAGE: Can we clearly distinguish liquefaction induced damage from seismic one?

	Level	DAMAGE									
	extension	D4-D5 Very heavy			D2-D3 Medium-severe			D1 Slight			_
Structural component		> 2/3	1/3 - 2/3	< 1/3	> 2/3	1/3 - 2/3	< 1/3	> 2/3	1/3 - 2/3	< 1/3	N
			В	С	D	E	F	G	н	1	L
1	Vertical structures										0
2	Floors										0
3	Stairs										0
4	Roof										0
5	Infills-partitions										0
0	Dro evicting demage	_	-	-	-	-	_	-	-	-	0

The AeDES form (Baggio et al. 2008)

III. LIQUEFACTION FRAGILITY CURVES: Which parameters should be used and what is the fragility curve trend?

Seismic Damage Grades? PGA and relevant potential liquefaction of ground?

Liquefaction parameter

OBJECTIVES

I. ANALYSIS OF LIQUEFCTION INDUCED DAMAGE: Can we clearly distinguish liquefaction induced damage from seismic one?

ANALYSIS OF LIQUEFCTION INDUCED DAMAGE Ι.

Summary table report

FOR EACH BUILDING:

- Plan, elevation and section view;
- Damage photos;
- > Damage localization;
- Analysis of damage

I. ANALYSIS OF LIQUEFCTION INDUCED DAMAGE Damage - Seismic Inertial actions

WALL SIMPLE OVERTUNING

ROOF OVERTURNING

DIAGONAL CRACKS

FLOOR WALL CONNECTION

I. ANALYSIS OF LIQUEFCTION INDUCED DAMAGE Damage - Liquefaction

I. ANALYSIS OF LIQUEFCTION INDUCED DAMAGE Damage - Liquefaction

I. ANALYSIS OF LIQUEFCTION INDUCED DAMAGE Damage – Liquef. + Inertial forces

PROSPETTO SUD

...in several cases both typical damage induced by inertial forces and liquefaction (settlment) is detected on buildings

...the liquefaction is a «filter» to seismic actions on superstructure but it can be not immediate

I. ANALYSIS OF LIQUEFCTION INDUCED DAMAGE Damage – Liquef. + Inertial forces

OBJECTIVES

The AeDES form (Baggio et al. 2008)

COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE: How much the global building damage is affected by liquefaction?

Π. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

LG Buildings. Vs. UG Buildings: How much set of buildings are comparable?

INGV ShakeMap: 20 May 2012 02:03:50 UTC M 5.9 INGV ShakeMap: 29 May 2012 07:00:03 UTC M 5.8

II. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

LG Buildings. Vs. UG Buildings: How much set of buildings are comparable?

PGA MAY 20th

PGA MAY 29th

•

..... similar PGA values mainly within the range 0.13 -0.18 g

II. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

LG Buildings. Vs. UG Buildings: How much set of buildings are comparable?

... very similar trend in terms of construction age and number of storeys

II. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

LG Buildings. Vs. UG Buildings: How much set of buildings are comparable?

MASONRY QUALITY

..... according to macro parameters the set of data (UG and LG) are certainly comparable in terms of vulnerability (against inertial forces)

II. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

DETECTED DAMAGE GRADE (LEVEL AND EXTENT) structural and non structural members according to AeDES form filled by team of experts in the post-earthquake emergency

LIGHT

Damage level	DAMAGE (1)									
- extension	Ve	D4-D5 ry Hea	vy	D2-D3 Medium-Severe			D1 Light			
Structural component Pre-existing damage	> 2/3	1/3 - 2/3	< 1/3	> 2/3	1/3 - 2/3	< 1/3	> 2/3	1/3 - 2/3	< 1/3	Nul
	A	В	С	D	E	F	G	Н	1	L
1 Vertical structures										0
2 Floors										0
3 Stairs										0
4 Roof										0
5 Infills and partitions										0

DAMAGE D2-D3

MEDIUM-SEVERE

DAMAGE D4-D5

VERY HEAVY

NULL

II. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

LG Buildings. Vs. UG Buildings: Damage level?

…liquefaction provides different types of damage but they are severe;

…liquefaction damage may be added to seismic damage due to inertial forces

II. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

LG Buildings. Vs. UG Buildings: Damage level?

...a similar trend has been found for all structuraland non structural components
....max difference observed on stairs (commonly sligthly damaged due to inertial forces)

II. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

LG Buildings. Vs. UG Buildings: Vulnerability influence?

THESSALONIKI – June 20th, 2018

II. COMPARATIVE ANALYSIS OF EMPIRICAL DAMAGE

LG Buildings. Vs. UG Buildings: Vulnerability influence?

...sesimic vulnerability clearly affected the empirical damage on UG set of buildings while it seems not correlated to the empirical damage of LG buildings

OBJECTIVES

III. LIQUEFACTION FRAGILITY CURVES: Which parameters should be used and what is the fragility curve trend?

III. LIQUEFACTION FRAGILITY CURVES

liquefACT

Seismic Damage Grades: Defined according to the European Macroseismic scale EMS-98

...for each building it is possible to associate a damage grade from the empirical damage

DAMAGE ANALYSIS – PROBABILITY OF DAMAGE

III. LIQUEFACTION FRAGILITY CURVES

$I_{AM} = \frac{1}{1 + z_{min}} \int_{z_{min}}^{z_{max}} r_{u}^{2} dz$

PGA and relevant potential liquefaction of ground? Iwasaki et al., 1984

$$r_{u} = \frac{\Delta u}{\sigma_{v0}'} = f\left(F_{s} = \frac{CRR}{CSR}\right)$$

se
$$F_S \le 1 \rightarrow r_u = 1$$

se
$$F_S > 1 \rightarrow r_u = (F_S)^{1/b}$$

The exponent b is a function of the cyclic resistance of the soil (defined in laboratory tests)

- It has a clear physical meaning (depends on the most superficial liquefiable material layer and its equivalent thickness)
- It takes into account the increase in interstitial pressure even in the layers in which the liquefaction is not carried out ($r_u < 1$)
- Directly correlated with the post-cyclic consolidation settlement in free-field conditions (as a consequence of the structural damage)
- It can be easily determined by simplified assessment of susceptibility to liquefaction (estimation of ru as a function of a safety factor, FS) and from the results of dynamic analyzes in effective tensions (rigorous calculation of ru).
- Finally, assuming the liquefaction for the entire potentially liquefiable layer, the index can be calculated on the basis of stratigraphic knowledge

DAMAGE ANALYSIS – PROBABILITY OF DAMAGE

The spatial distribution of the thickness of potentially liquefiable material appears to be well correlated with the damage to the structures induced by liquefaction

DAMAGE ANALYSIS – PROBABILITY OF DAMAGE

... I_{AM} is weel correlated to the liquefaction induced damage

liquefact

DAMAGE ANALYSIS – PROBABILITY OF DAMAGE

III. LIQUEFACTION FRAGILITY CURVES

- Insufficient data for DG4 and DG5 curves; more I_{AM} values needed
- Damage grades are based on seismic convention
- \succ These curves are related to a given PGA range and it has been assumed ru = 1

III. LIQUEFACTION FRAGILITY CURVES

- Insufficient data for DG3 and DG4 curves; more I_{AM} values needed
- Damage grades are based on seismic convention
- These curves are related to a given PGA range and it has been assumed ru = 1

